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EXECUTIVE SUMMARY 
Intermittent and ephemeral streams comprise a large portion of the arid southwest, yet tools to 
assess stream health have so far only been available for perennial and long-term intermittent 
streams, meaning that watershed assessments are incomplete — in some watersheds, 
substantially so. Managers therefore have only a limited ability to assess the effectiveness of 
their programs. Consequently, nonperennial streams, especially ephemeral streams, are often 
excluded from regulatory and management programs. To address this gap, researchers at the 
Southern California Coastal Water Research Project (SCCWRP), the Central Coast Wetlands 
Group (CCWG), and California State University at Monterey Bay (CSUMB) have developed 
new assessment tools to assess the ecological condition of intermittent and ephemeral streams 
when they are dry following the EPA’s Level 1-2-3 framework. Specifically, we have developed 
Level 3 (L3) bioassessment indicators for use in dry ephemeral and intermittent streambeds, used 
them to validate a Level 2 (L2) tool, the California Rapid Assessment Method (CRAM) for 
episodic streams, and then conducted a Level 1 (L1) analysis where we estimate the extent and 
condition of non-perennial streams in California and Arizona. 

An L3 bioassessment index based on terrestrial indicators 

Using previously developed protocols for sampling terrestrial 
arthropods and bryophytes in dry streambeds, we developed 
predictive bioassessment index. Sampling 99 sites representing 
a range of natural and disturbed conditions in two states, we 
calibrated an index to predict metrics characterizing condition 
(e.g., combined richness of beetle and ant taxa) appropriate for 
different environmental settings. Differences from these natural 
expectations were scored and combined into an index that 
quantifies ecological condition.  

Validation of an L2 index for episodic streams 

The L3 index and its component metrics provides an 
opportunity to validate a previously developed L2 assessment 
tool for episodic streams. The California Rapid Assessment 
Method (CRAM) module for riverine wetlands had been 
adapted for conditions in episodic streams, such as more 
appropriate expectations for biotic complexity in arid systems, 
more emphasis on naturally variable sediment regimes, and an 

overall larger assessment area. Several metrics showed strong correlations between L2 
assessment scores and L3 measures of condition, indicating that the CRAM episodic module is a 
valid tool to assess conditions in these streams. Therefore, episodic systems can be included in 
regulatory programs where L2 assessments are needed (such as impact assessments and 
mitigation monitoring), as well as in ambient monitoring programs. 

Sampling terrestrial indicators 
in a dry streambed. 
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Scores for the episodic CRAM module were positively correlated with the multimetric 
index (MMI) derived from L3 indicators of dry stream condition. 
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L1 analysis shows that non-perennial streams are pervasive, and mostly in good 
shape in both states  

 

 
Models based on L2 and L3 assessment indicates that California and Arizona are dominated by 
ephemeral and intermittent streams, and the vast majority of these streams are likely in good 
biological condition. Poor conditions are most likely in certain areas, such as near the cities of 
Phoenix and Los Angeles, as well as in agricultural areas like the San Joaquin and Imperial 
Valleys of California. Notably, intermittent streams in California appear to experience higher 
levels of stress, as only a slim majority are likely to be in good condition, and more than 10% are 
likely to be in poor condition.  

Recommendations 

• Integrate dry streams into monitoring programs. This pilot study has generated much 
of the required infrastructure to begin large-scale monitoring, such as developing 
protocols and establishing a standard set of metrics and indices for generating and 
analyzing data. With sufficient training, monitoring practitioners in the California and 
Arizona can begin assessing the condition of dry streams. 

• Refine reference definitions for dry streams. This study adapted an approach for 
identifying undisturbed streams that was originally developed for perennial systems, 
which heavily emphasizes minimizing activity in the upstream watershed. However, in 

Predicted conditions assessed by terrestrial L3 indicators in California and Arizona. 
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dry streams, upstream disturbance may be a poor indicator of local factors that have a 
larger influence on in-stream condition. Improved measurements of local disturbance 
(e.g., measures of habitat alteration, sediment contamination, or hydromodification) may 
be more useful for identifying reference sites in systems where upstream land-use is a 
poor proxy. 

• Collect data from additional reference sites, particularly in underrepresented 
regions. The limited reference data generated by this study may not capture the full range 
of natural conditions, nor does it provide information about seasonal or interannual 
variability. Collecting these data may lead to the development of more precise indices, as 
well as better guidance on conditions where these indices are best suited. 
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INTRODUCTION 
Nonperennial rivers and streams (NPRS) comprise a large portion of stream-miles in the arid 
southwest of the USA, but at this time, we have few tools that can be used to assess their 
condition. Consequently, monitoring programs may overlook these streams, despite their 
importance in providing beneficial uses or protecting adjacent perennial waters. With an 
increasing population and global change leading to extreme floods and droughts, land managers 
need to understand how freshwater systems respond to human impacts and relate to our clean 
water supply. Humans in industrialized countries have had a significant impact on freshwater 
ecosystems. To understand these systems, we can monitor and assess the relationship between 
the biota and the rivers, lakes, wetlands, and streams that create the above-ground freshwater 
network. Determining the best way to assess these systems is integral to evaluating their health.  

Non-perennial stretches of rivers are common features in headwater systems, but they can also 
be found throughout river networks (Steward et al. 2012) and play key ecological roles in a 
watershed context during dry and wetted phases. Datry et al. (2014) described NPRS as 
continuously shifting habitat mosaics driven by alternating phase-changes (i.e., flowing, drying, 
and dry) which maintain habitat heterogeneity. These alternating phases can lead to temporal 
shifts in nutrient processing and availability which may affect nutrient balances and export 
downstream (von Schiller et al. 2011). Even when surface water is completely absent, dry river 
channels often have sub-surface flows that sustain river flows downstream (Levick et al. 2008), 
making them important for maintaining watershed connectivity. Additionally, dry river channels 
function as storage areas for nutrients and organic material (Steward et al. 2012). Alternating 
phase changes can act as disturbances for both aquatic and terrestrial biota, but NPRS provide 
habitat for organisms with various strategies and adaptations (physiological or behavioral) to 
cope with these changes (Datry et al. 2016. For example, some taxa (e.g., aquatic invertebrates), 
are present as juveniles during the flowing phase and are dormant as eggs during dry phases and 
require both phases to persist within a system (Armitage and Bass 2013; Stubbington et al. 
2018). The wide range of NPRS biodiversity includes: prokaryotes, fungi and protozoans (Febria 
et al. 2015; Romani et al. 2017), diatoms (Tornés and Ruhí 2013), vascular plants (Sabater et al. 
2017), aquatic invertebrates (during flowing phases and inhabiting the hyporheic zone during dry 
phases) (Wood et al. 2010; Stubbington and Datry 2013; Stubbington et al. 2017), fish (Kerezsy 
et al. 2017), terrestrial and semiaquatic invertebrates (Corti and Datry 2015; Sánchez-Montoya et 
al. 2016b; Steward et al. 2017), as well as amphibians, reptiles, birds, and mammals (Sánchez-
Montoya et al. 2016a; Sánchez-Montoya et al. 2017). Given their widespread distribution, 
abundance, and important ecosystem functions including hydrologic connectivity with adjacent 
perennial waters, the condition of non-perennial systems and their ability to function properly 
can greatly influence the health of entire watersheds. 

Episodic streams are particularly abundant and widespread in drier regions of California and 
Arizona. Most streams in California and Arizona exhibit some degree of ephemeral flow (NHD 
2020; Levick 2010). Despite their intrinsic values and importance to hydrologically connected 
waterbodies, they are typically excluded from ambient surveys and overlooked in management 
programs, because most wetland and stream assessment tools have been focused on perennial 
streams (Rehn et al. 2015). Ephemeral streams (especially in desert locales) are under increasing 
pressure from development, including new urban/suburban and infrastructure projects, and, most 
recently, alternative energy production facilities (e.g., wind and solar) (Hamada et al. 2016). 
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Assessment tools for ephemeral and intermittent streams are necessary to allow managers to 
prioritize streams for protection or restoration, assess impacts, and develop and evaluate 
performance standards for mitigation or remediation.  

To address this need, we developed a suite of tools following the U.S. Environmental Protection 
Agency’s three-tiered framework for assessing the condition of wetlands and other aquatic 
resources. Level 1 (L1) assessments are map-based and require no field visits. Level 2 (L2) are 
rapid, field-based assessment tools of waterbody structure and function but require no sample 
collection. Level 3 (L3) are intensive methods that require lab analysis of field-collected 
samples, such as tools based on biological indicators or water chemistry. In general, L3 methods 
provide the most accurate measures of wetland condition, whereas L1 assessments are most 
suitable for large-scale application. L3 assessments may be used to L2 assessments, and both L2 
and L3 may be used to validate L1 assessments.  

Prior to this effort, California had an extensive assessment toolkit focused on perennial streams. 
This toolkit included L3 indices for benthic macroinvertebrates (Mazor et al. 2016), benthic 
algae (Theroux et al. in review), as well as L2 tools for riparian wetlands (CWMW 2013). 
Arizona, too, had an L3 index for perennial streams based on benthic macroinvertebrates (ADEQ 
2015) and is developing one for diatoms (P. Spindler, personal communication), but no L2 
assessment tools. Adaptation of L3 indices in flowing intermittent streams has been completed in 
California (Mazor et al. 2014) and is underway in Arizona (P. Spindler, personal 
communication). However, apart from a pilot study in the San Diego hydrologic region (Mazor 
et al. 2019a), there have been few efforts to apply or create new L3 assessment tools for dry 
intermittent and ephemeral streams in the USA. 

California’s L2 assessment tool, the California Rapid Assessment Method (CRAM), has multiple 
modules for different wetland types, and the traditional riverine module applies in many 
intermittent streams even when they are not flowing. However, this module was less effective in 
drier streams characterized by more episodic flow events, where the module exhibited relatively 
poor scores where systems were largely undisturbed. In particular, two of the CRAM attributes 
that comprise the final score — the hydrology and biotic structure attributes — did not 
adequately capture the dynamics in natural episodic streams. Large, episodic floods in dryland 
climates means that morphological channel features are frequently reworked and may lack the 
distinctiveness of these features in perennial streams in more temperate climates. For temperate-
climate streams, where precipitation is more evenly distributed both temporally and spatially, 
lower and more frequent intermediate flow events tend to govern the equilibrium channel shape 
and size. However, because dryland ephemeral channels exhibit a more rapid response to rainfall 
and shorter-duration flows than temperate-region streams, they tend to be shaped by high 
magnitude flow events. These streams experience such extreme and rapid variations in flood 
regime, that they rarely reach process-form equilibrium where flow conditions change too 
rapidly for channel bed forms to develop a form matching that flow. Thus, existing sedimentary 
structures can give a misleading picture of the flow that occurred (Levick et al. 2008). The 
transitory nature of morphological features in these climates is further enhanced by generally less 
cohesive soils and poorly vegetated banks. These processes create a fabric of highly-varied, 
transient channel forms that confound determinations of active versus relict stream processes and 
conventional notions of stable and unstable channel forms (Vyverberg 2010; Stein et al. 2011). 
Therefore, a new CRAM module was developed for Episodic Riverine systems. 
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This report describes efforts to develop and validate assessment tools for dry ephemeral streams 
and intermittent rivers. First, we describe the development of L3 indices based on a variety of 
biological indicators (i.e., terrestrial arthropods in the streambed, arthropods on riparian 
vegetation, and bryophytes on the banks and channel) using data collected from arid portions of 
California and Arizona. We then use these L3 indices to validate the CRAM module for episodic 
streams described above. Finally, we conduct two L1 assessments: one based on estimating the 
extent and condition of streams where the new L3 indices should be used, and the other based on 
the L2 episodic CRAM module. 
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L3 ASSESSMENT TOOLS: DEVELOPMENT OF BIOLOGICAL INDICATORS FOR DRY 
INTERMITTENT AND EPHEMERAL STREAMS BASED ON TERRESTRIAL ARTHROPODS 
AND BRYOPHYTES 
Non-perennial rivers and streams are estimated to make up more than 50% of all river systems 
worldwide (Datry et al. 2016), consisting of intermittent rivers and ephemeral streams (IRES) 
which both cease to flow for extended periods of time. Intermittent rivers can maintain flows 
seasonally, while ephemeral streams maintain flows only after large rain events (Nadeau et al. 
2015). NPRS are expected to become more prevalent with longer dry periods as growing human 
population, urban development and climate change place increased stress on water resources 
(Sabater and Tockner 2009). This change will be especially apparent in arid to semi-arid regions 
where droughts and water shortages are already common, creating challenges for river 
monitoring and management that rely on tools that require the presence of surface water for 
assessment (e.g., indices based on benthic arthropod composition).  

Traditional bioassessment indicators that rely on aquatic assemblages (e.g., benthic arthropods 
or algae) can be difficult to use in certain non-perennial systems due to the unpredictability of 
flows (Steward et al. 2018), and may provide an incomplete picture of stream health by 
overlooking dry-phase biota. Monitoring programs often have optimal index periods which are 
generally set over a span of months when baseflow conditions are expected, flow variability is 
low and aquatic communities are relatively stable (Barbour et al. 1999). In some arid climates, 
such as Southern California where the optimal index period for sampling may be difficult to 
predict, streams that have a high probability of drying are often excluded entirely from 
monitoring programs (Hall et al. 1998). In some instances, streams may remain dry for months 
to years and assessing their ecological health using traditional bioassessment methods on a 
timeline needed to inform management decisions is impossible. This can bias ambient surveys 
such as the United States Environmental Protection Agencies National Rivers and Streams 
Assessment that excludes streams that are dry during the index period. The inclusion of dry 
streams in ambient surveys would expand the target population of streams and result in a more 
comprehensive assessment of ecological condition of streams across the U.S. 

We developed sampling methods to characterize terrestrial arthropod and bryophyte assemblages 
of NPRS and assessed the ability of biological metrics that characterize these assemblages to 
distinguish reference condition streams from those impacted by human activities. This 
information will support the development of bioassessment tools for NPRS that can be used 
during the dry phase. For the purposes of this study, a reference condition site is characterized as 
having minimal anthropogenic disturbance in the watershed (Stoddard et al. 2006; Ode et al. 
2016). We developed metrics characterizing aspects of terrestrial arthropod (ground-dwelling 
and vegetation-dwelling) and bryophyte assemblages known to respond to anthropogenic 
disturbances. These metrics described the richness, taxonomic composition, diversity, and 
feeding groups or growth forms for each assemblage. We accounted for bias in metric values 
caused by natural variation by adjusting metrics that were influenced by naturally occurring 
environmental gradients. We evaluated metric responses to anthropogenic disturbance and 
assessed the ability of metrics to discriminate between reference and non-reference sites (e.g., 
background variability, signal-to-noise ratio). We also evaluated the role of human activities 
(i.e., % urbanization, % agriculture and % urban and agriculture land cover in the watershed) and 
percent fines as limiting factors to the biological responses. Combined with traditional protocols 
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and metrics for flowing systems, the development of biological assessment tools for non-
perennial systems during the dry phase would allow management agencies to assess stream 
condition regardless of presence or duration of flow, reduce the number of streams excluded 
from bioassessments, and result in more comprehensive assessments of watershed condition. 

Approach 

There are two common approaches for assessing the biological integrity of waterbodies 
(Hawkins et al. 2000, Mazor al. 2019b): multimetric indices (MMIs) and measures of taxonomic 
completeness (e.g., ratios of observed-to-expected taxa, or O/E indices). Both methods share the 
goal of transforming complex taxonomic data into simple measures of biological condition. 
MMIs are comprised of metrics based on taxonomic composition, pollution tolerance values, or 
life history traits; condition is interpreted to be healthy when these metric values are close to 
values observed at reference sites. In contrast, O/E indices use species-distribution models to 
predict which taxa are likely to occur. When all likely taxa occur (i.e., the ratio of observed to 
expected taxa is close to 1), conditions are interpreted to be healthy. 

Methods 

Study Area and Site Selection 

The study focused on arid (xeric) portions of California and Arizona, regions where ephemeral 
and intermittent streams comprise the majority of stream-miles (Figure 1). We divided the study 
area into 10 regions. Two regions in California (i.e., the South Coast and the Central Valley) 
were sampled under a variety of other programs, but using the same methods described below. 
We attempted to identify at least 2 reference sites and 3 non-reference sites in each region. 
Reference sites were defined as those with minimal human activity in the watershed, combined 
with little evidence of local habitat disturbance (detected through consultation with local experts, 
as well as physical habitat data, screened as described below).  

Landscape-scale measures of human activity were derived from the Streamcat dataset (Hill et al. 
2016) using thresholds modified from Ode et al. (2016). Specifically, we looked for catchments 
that had low signs of human activity at both the watershed and local catchment scale (Table 1). A 
total of 62 reference sites were identified based on professional judgment of project leads, and 
confirmed by evaluating evidence of local and landscape-scale human activity (Table 2).  

Table 1. Reference thresholds applied to Streamcat variables. 
Human activity measure Watershed threshold Catchment threshold 

% agricultural land use 3 3 

% urban land use 3 10 

% agricultural or urban land use 
(combined) 

5 10 

Road density (km/km2) 2 5 

Road crossings 50 3 

Canal density (km/km2) 10 2 

Mine density 0 0 
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Figure 1. Map of the study area. 
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Table 2. Number of reference and non-reference sites sampled in each region. 

Region Reference sites Non-reference sites Total 

California 51 33 84 

  South Coast* 33 16 49 
 

Central Coast 4 0 4 
 

Central Valley* 3 8 11 
 

Modoc Plateau 3 1 4 
 

Mojave Desert 3 3 6 
 

Sonoran Desert 1 3 4 
 

Eastern Sierra 4 2 6 

Arizona 11 4 15 
 

Central 3 3 6 
 

Northern 4 1 5 
 

Western 4 0 4 

Total 62 37 99 

 

Data collection 

Following the protocol described in Robinson et al. (2016), we collected biological and habitat 
data at 99 sites in California and Arizona. At each site, we designated a representative 160-m 
reach at each site, which we separated into eight sections. In each section, we collected channel 
and vegetation-dwelling arthropods using ramped pitfall traps and a canvas bag, respectively 
(Robinson et al. 2016). Ramped pitfall traps offer advantages over traditional pitfall traps 
because they reduce disturbance to the habitat, and they are also more suitable for sampling in 
stream beds with hard substrates (i.e., cobbles, bedrock, or concrete) that make digging pitfall 
traps impractical (Pearce et al. 2005; Patrick and Hansen 2013). The traps were left out for 24 
hours to collect both diurnal and nocturnal arthropods, which were stored in jars along with the 
contents of the traps for later identification. 

Vegetation dwelling arthropods were collected on plants in or near the channel, following 
Robinson et al.’s methodology of visually picking the healthiest plant in each section. We 
wrapped the plant in a 1-m2 canvas bag and hit it a total of 30 times (Robinson et al. 2016), using 
a plastic pipe to dislocate any vegetation-dwelling arthropods. The contents of the bag were 
placed in a jar and preserved with 70% ethanol for later identification. 

Along with arthropods, we also collected bryophytes (moss) at each site, which were collected 
using a floristic approach (Newmaster et al. 2005; Robinson et al. 2016). We designated three 
mesohabitats (Robinson et al. 2016): right and left banks and the channel. We designated 20 
minutes to search for moss in each habitat and allotted 12 minutes to collect moss (Robinson et 
al. 2016). We collected up to a total of five samples of moss from each mesohabitat, collecting 
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them by hand in a pattern from most diverse to least diverse patches in each microhabitat (e.g., 
soil, rock, or wood) present (Robinson et al. 2016).  

We measured aspects of physical habitat such as channel depth, sediment size, and slope for each 
transect in the sample reach following Robinson et al. (2016). At each of the 8 transects, we 
measured sediment particle size, riparian vegetation, channel morphology, and microhabitat 
types. Along with physical habitat information, we also recorded any stressors observed. Using 
stressor categories such as fire breaks, walking paths, and other anthropogenic disturbances, we 
assigned a categorical value to each stressor based on how prevalent it is. These values ranged 
from “Not present” to “25% of the reach” or “over 75% of the reach”.  

Metric calculation and initial screening 

We calculated 233 metrics that characterize composition of the three assemblages (Table 3). 
Metrics were largely based on taxonomic composition, but a few reflected life history traits 
(specifically, feeding strategies of certain Coleoptera and spiders). For the arthropod metrics, we 
also calculated metrics based on invasive species (e.g., Argentine ants, Linepithema humile). For 
each type of metric, we calculated richness, relative richness, abundance, and log abundance; for 
some higher-level groups (e.g., Araneae), we also calculated diversity and evenness metrics.  

Metrics were screened to eliminate those with insufficient information to continue analysis. This 
step included removing richness ranges less than 5 and removing metrics with a high number of 
zero values (> 2/3). Metrics passing these screens were then modeled to account for natural 
variability, as described below. Adjusted metrics were then screened to identify those with the 
highest level of responsiveness to watershed alteration. 
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Table 3. Summary of metrics used to characterize stream conditions. 

Bryophytes Riparian arthropods Streambed arthropods 

Bryophyte morphospecies 

Bryophyte families 

Bryophyte genera 

Acrocarps 

Pleurocarps 

Bryaceae 

Pottiaceae 

Arthropods 

Coleoptera 

Hymenoptera 

Ants 

Hemiptera 

Thysanoptera (thrips or silverfish) 

Spiders 

Other arthropods 

Coleoptera + Ants 

Coleoptera + Ants + Spiders 

Coleoptera + Spiders 

Ants + Spiders 

Arthropods 

Coleoptera 

Ground beetles 

Rove beetles 

Ground + Rove beetles 

Predator beetles 

Herbivore beetles 

Fungivore beetles 

Fungivore, dead wood, and detritivore beetles 

Hymenoptera 

Ants 

Thysanoptera 

Diptera 

Hemiptera 

Archaeognatha (bristletails) 

Earwigs 

Spiders 

Wolf spiders 

Ground spiders 

Web spiders 

Ground-hunting spiders 

"Other" hunting spiders 

Mites 

Isopods 

Collembola 

Other arthropods 

Coleoptera + Ants 

Coleoptera + Spiders 

Coleoptera + Ants + Spiders 

Ants + Spiders 

Invasive arthropods 
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Assessing and Reducing Influence of Natural Gradients in Characterizations of Biological 
Responses to Human Activity 

We modeled each of our biologic metrics as a function of 89 natural environmental gradients by 
constructing a 500-tree RF model. The environmental gradients used as predictors included local 
catchment and watershed scale measures of climate, topography, geology, and hydrology and 
were derived using geographic information systems analysis or obtained from the StreamCat data 
set (Hill et al. 2016) and field observations. These predictors were chosen based on their known 
influence on stream hydrology and other habitat features that may affect the terrestrial 
assemblages we sampled. After fitting the RF models using all 89 environmental predictors, we 
assessed the importance for each predictor in each RF model by calculating the percent increase 
mean squared error (%IncMSE). Percent increase MSE is calculated as the difference between 
the MSE of the model when all values of a predictor are permuted and the original MSE rate 
divided by the standard error (Cutler 2007). If the %IncMSE of any given predictor was < 0, we 
removed the predictor from the model and fit the model again using only those predictors with 
%IncMSE > 0. By using this method, each model potentially has its own unique suite of 
predictors. Following Vander Laan and Hawkins (2014), we adjusted the metric values by 
substituting the residual value (observed value – expected value) as the new metric value if the 
models explained > 10% of the variation in an individual metric’s values observed at reference 
sites. All statistical analyses related to the RF modeling were completed using the Random 
Forest package (Liaw and Wiener 2002) using R software (R core team 2016). 

Assessing Metric Ability to Distinguish Ecological Condition Between Reference and Non-
Reference Sites 

We assessed the ability of metrics to distinguish between reference and non-reference sites using 
multiple criteria previously used in MMI development studies. We used criteria modified from 
Herbst and Silldorff (2009) designed to quantitatively assess a metrics ability to provide clear 
discrimination of human activity on benthic macroinvertebrate communities. These criteria were 
developed to assess metrics that have a negative relationship with human activity (i.e., 
“decreaser” metrics) as well as metrics that have a positive relationship with human activity (i.e., 
“increaser” metrics). Following Herbst and Silldorff (2009), we eliminated metrics that did not 
pass any of the following criteria: 1) background variability measured as the coefficient of 
variation less than 0.2 (i.e., standard deviation of reference site metric values divided by the 
mean metric value at reference sites), 2) signal from human activity greater than 1.5 or less 
than 0.67 for increaser metrics (measured as the ratio between the mean of reference site metric 
values and the mean of non-reference site metric values), 3) signal-to-noise ratio greater than 1.5 
(measured as the absolute difference between the mean of reference metric values and the mean 
of non-reference metric values divided by the standard deviation in the reference site metric 
values), and 4) for all decreaser metrics discrimination efficiency defined as having less than 
50%, 35%, and 25% of non-reference metric values greater than the 10th, 25th, and 50th quantiles 
of reference site metric values, respectively. For all increaser metrics, discrimination efficiency 
criteria is met if less than 50%, 35%, and 25% of non-reference metric values measured below 
the 90th, 75th and 50th quantiles of reference site metric values, respectively.  

For all metrics passing at least one of the Herbst and Silldorff criteria, we calculated t-statistics 
between mean metric values at reference and non-reference sites to assess their ability to respond 
to human activity. We considered metrics with the greatest absolute t-statistics to be the most 
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responsive to disturbance and be the most likely to distinguish reference sites from non-reference 
sites. We expect metrics that are minimally influenced by natural variation, pass at least one of 
the metric assessment criteria and are the most responsive to human activity will have the 
greatest potential to be used in bioassessment tools in NPRS during the dry phase. Only metrics 
passing at least one of the Herbst and Silldorff criteria and those with t-statistics > 1.80 were 
retained to be used in MMI development. 

Removing Duplicate Metrics  

Following Schoolmaster et al. (2013), we removed duplicate metrics, and scaled and reflected 
metrics to prepare for the combination of individual metrics into candidate MMIs. To identify 
duplicate metrics, we calculated Pearson’s R squared for each combination of metrics and 
removed duplicate metrics that had a Pearson's R > 0.95 or < -0.95. This method differs from 
removing redundant metrics that simply have high correlations by instead only removing the 
metrics with high correlations that contain the same information, such as metrics describing 
percent native species and percent non-native species (Schoolmaster et al. 2013).  

Scoring Metrics 

We scored metrics so that they ranged from a scale of 0 (indicating poor conditions) to 1 
(indicating reference conditions), such that all metrics (whether they were increasers or 
decreasers) could be interpreted the same way. This scoring facilitates their incorporation into an 
MMI. To score metrics, we used the following equations from Schoolmaster et al. (2013): 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  =  
𝑚𝑚 − 𝐿𝐿
𝑈𝑈 − 𝐿𝐿

 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = max(𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

where 𝑚𝑚 is the raw metric value, 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the scaled metric, 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the scored metric, and 𝐿𝐿 
and 𝑈𝑈 are the 2.5th and 97.5th percentiles of 𝑚𝑚, respectively. For all metrics above and below 
the 2.5th and 97.5th percentiles of 𝑚𝑚, the 𝑚𝑚 was set to 𝐿𝐿 and 𝑈𝑈, respectively. 

Prior to calculating metric scores for MMI development, we removed all negative metric values 
that resulted from adjusting metric scores that were correlated with natural variation. To remove 
negative metric values, we used the following equation: 

𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠 =  (𝑚𝑚 + 𝑎𝑎𝑎𝑎𝑎𝑎(min(𝑀𝑀)) 

where 𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠 is the positive metric value, 𝑚𝑚 is an individual site metric and 𝑎𝑎𝑎𝑎𝑎𝑎(min(𝑀𝑀) is the 
absolute minimum value of the given metric across all sites. To ensure all metrics that were 
candidates for MMI development had negative relationships with stress and resulted in an MMI 
with a negative correlation to stress, we reflected all metrics that were increasers following 
Schoolmaster et al. (2013). We reflected all metrics with a positive relationship with stress (i.e., 
metrics with negative t-statistics) using the following equation: 

𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟(max(𝑀𝑀) −𝑚𝑚) 
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where 𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟 is the reflected metric score, max(𝑀𝑀) is the maximum value of a metric score across 
all sites, and 𝑚𝑚 is an individual site metric.  

Multimetric Index Development  

We used a modified algorithm from Schoolmaster et al. (2013) to select combinations of 
candidate metrics and create an empirical based MMI that results in an MMI with the greatest 
negative correlation with stress. The algorithm creates candidate MMIs by using each metric as a 
starting metric and adding metrics that result in the greatest negative correlation with stress until 
each candidate metric is used. This results in multiple candidate MMIs for each beginning 
metric. We calculated candidate MMIs using the following steps: 

1) For each combination of an individual metric 𝑚𝑚1, find the best combination of each other 
metric, 𝑚𝑚𝑗𝑗, and find the best combination of 𝑚𝑚1 +  𝑚𝑚𝑗𝑗 that has the strongest negative 
correlation (Pearson’s R) with watershed condition (specifically, the Index of Watershed 
Integrity [IWI], a variable in StreamCat that combines multiple measures of land cover 
and land use). Record the correlation.  

2) Add 𝑚𝑚𝑗𝑗 to 𝑚𝑚1 and create a candidate MMI that resulted in the most negative correlation 
with IWI.  

3) Continue this process until all metrics have been added to the candidate MMI based on 
criteria from step 1.  

4) Repeat steps 1-3 using a new starting metric, 𝑚𝑚1, until additive MMIs have been created 
for all 𝑚𝑚𝑗𝑗 metrics. 

This algorithm creates the best possible combinations of metrics based on negative correlations 
with IWI and gives each candidate metric the chance at being the first metric in the MMI. After 
all candidate MMIs have been created, the best MMI for each beginning metric is chosen based 
on the most negative correlation with IWI. All duplicate MMIs are removed from the list of 
candidate MMIs for further analysis. 

After determining the best candidate MMI for each starting metric, we fit a linear model using 
the MMI as the response variable and IWI as the predictor variable. We calculated the Akaike 
information criterion (AIC) for that model and calculated the difference in all model AIC scores 
from the lowest AIC score (Δ AIC). We calculated Δ AIC as: 

𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 −min (𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗  

where 𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴 is the difference between an individual MMI AIC value and the minimum AIC 
value of candidate MMIs, 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 is the AIC value of each individual MMI and min (𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗 is the 
minimum AIC value for all candidate MMIs. We considered models that had a Δ AIC < 2 to be 
the best performing models. If no MMIs had a 𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴 value < 2, we selected the MMI with the 
minimum AIC value as the best performing MMI. 
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Results 

Assessing and Reducing Influence of Natural Gradients in Characterizations of 
Biological Responses to Human Activity 

Natural environmental gradients explained greater than 10% of the variation in 117 of the 233 
metrics we evaluated (Table 4). The models were most successful in explaining the variation in 
ground-dwelling arthropod metrics (45 models > 10% variation explained), followed by 
vegetation-dwelling arthropod metrics (43 models > 10% variation explained), and bryophyte 
metrics (29 models >10% variation explained). Models that explained more than 10% of 
variation in scores at reference sites were used to adjust metric values by subtracting the 
predicted value from the observed value (henceforth called “adjusted metrics”). A total of 67 
metrics (or adjusted metrics, where appropriate) passed screens recommended by Herbst and 
Silldorff (2009). Sixty-two percent of these metrics reflected riparian arthropod communities, 
while the rest reflected streambed arthropod communities; no bryophyte metrics met these 
criteria. 

Table 4. Top 8 metrics within each assemblage group, ranked by the variance in reference site 
scores explained by natural factors in a random forest model. 

Metric R2 Assemblage Form 
Streambed arthropods    
  T_Is_La 0.62 Isopoda Log abundance 

 T_Site_Ri 0.41 Arthropoda Richness 

 T_Ar_Ri 0.4 Araneae Richness 

 T_Ar_Di 0.39 Araneae Diversity 

 T_Ot_Ri 0.38 Other Arthropoda Richness 

 T_ArGh_La 0.37 Ground-hunting Araneae Log abundance 

 T_Ly_Ab_RO 0.35 Lycosidae Relative abundance 

 T_Cl_Ab_RS 0.35 Collembola Relative abundance 
Riparian arthropods    
 V_FoAr_La 0.59 Mixed Arthropoda Log abundance 

 V_Ar_La 0.54 Araneae Log abundance 

 V_CoFoAr_La 0.48 Coleoptera Formicidae and Araneae Log abundance 

 V_CoAr_La 0.45 Coleoptera and Araneae Log abundance 

 V_CoFo_Ev 0.41 Coloeoptera and Formicidae Evenness 

 V_FoAR_Ev 0.39 Formicidae and Araneae Evenness 

 V_CoFoAr_Di 0.39 Coleoptera Formicidae and Araneae Diversity 

 V_Fo_La 0.39 Formicidae Log abundance 

 V_CoFo_Di 0.38 Coleoptera and Formicidae Diversity 
Bryophytes    
 CB_BrFrm_Ri 0.58 Bryophyte families on channel and banks Richness 

 B_BrFm_Ri 0.51 Bryophyte families on banks Richness 

 CB_BrGe_Ri 0.44 Bryophyte genera on channel and banks Richness 

 B_BrGe_Ri 0.39 Bryophyte genera on bank Richness 

 CB_Br_Di 0.35 Bryophytes on channel and bank Diversity 

 CB_Br_Ri 0.33 Bryophytes on channel and bank Richness 
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 CB_Ba_Ri 0.33 Bryaceae on bank Richness 

 C_BrFm_Ri 0.33 Bryophyte families on channel Richness 

 C_BrGe_Ri 0.31 Bryophyte genera on channel Richness 
 

Evaluation of Metric Response to Human Activity 

From these 67 metrics, we identified 45 metrics with the greatest absolute t-statistics with 
t-statistics > 1.80 (referred to hereafter as “responsive metrics”). Of the three assemblages 
analyzed, only ground-dwelling and vegetation-dwelling arthropod assemblages had metrics with 
t-statistics > 1.80 which accounted for 17 and 28 of the 45 responsive metrics, respectively 
(Table 5). These 45 metrics included measures of richness, abundance, taxonomic composition 
and functional feeding groups. Two examples of highly responsive metrics are shown in Figure 
2. 

 

Table 5. Top 8 responsive metrics with the greatest absolute t-statistics.  

Metric t-statistic 
Streambed arthropods  
  Coleoptera richness 3.84 

 Formicidae richness 3.82 

 Percent inasive abundance 3.41 

 Richness of fungivore, deadwood, and detrivore Coleoptera 3.11 

 Relative richness of Lycosidae 3.05 

 Relative richness of Archaeognatha 3.03 

 Coleoptera diversity 3.02 

 Formicidae diversity 2.93 
Riparian arthropods  
 Log abundance of Coleoptera and Formicidae 6.47 

 Log abundance of Formicidae 4.98 

 Log abundance of Coleoptera, Formicidae, and Araneae 4.94 

 Log abundance of Formicidae and Araneae 4.89 

 Log abundance of Coleoptera and Araneae 4.32 

 Log abundance of Araneae 4.18 

 Relative richness of Coleoptera, Formicidae, and Araneae 3.22 

 Relative richness of Coleoptera and Araneae 2.94 
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Figure 2. Scored metric values at two example responsive metrics. 

 

Remove Duplicate Metrics and Scale and Reflect Remaining Metrics 

Following Schoolmaster et al. (2013), we removed 4 duplicate metrics that had a Pearson's R > 
0.95 or < -0.95 (Table 6). The 4 metrics we removed from further analysis were metrics that 
included combinations of taxonomic groups (e.g., combined Formicidae and Araneae richness). 
We selected the simplest version of the correlated to retain the metrics that were the easiest to 
calculate and contained the same information without adding more taxonomic groupings.  

 

Table 6. Metric pairs with high correlations and their respective Pearson’s R values.  

Metric Correlated metric (excluded) Pearson’s R 

Richness of Araneae Richness of Formicidae and Araneae 0.96 

Richness of Araneae Relative richness of Formicidae and Araneae 0.98 

Log abundance of Coleoptera and 
Araneae 

Log abundance of Coleoptera, Formicidae, and 
Araneae 

0.98 

Log abundance of Araneae Log abundance of Formicidae and Araneae 0.97 
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Multimetric Index Development Results 

Metric screening 

We calculated a total of 1640 candidate MMIs. For each starting metric, 𝑚𝑚1, we found the best 
combination of 𝑚𝑚𝑗𝑗 metrics that created an MMI with the most negative correlation with the IWI. 
We excluded all other candidate MMIs whose starting combination of metrics began with the 
same 𝑚𝑚1 metric. From the remaining 41 candidate MMIs we excluded 7 MMIs that contained 
the same metrics as another candidate MMI, leaving 34 candidate MMIs to consider for further 
analysis. We did not find a candidate MMI that had a 𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴 < 2. We therefore chose the 
candidate MMI with the lowest AIC value to be the best MMI to respond negatively to stress 
referred to hereafter as the “final MMI”).  

The final MMI was MMI15 (Table 7), which was the candidate MMI with the least amount of 
combined metrics. Only two of the three assemblages were included in the final MMI and 
included 3 ground-dwelling arthropod and 5 vegetation-dwelling arthropod metrics for a total of 
8 metrics; no bryophyte metrics were selected for inclusion. The 8 metrics included in the final 
MMI contained metrics that characterized richness, taxonomic composition (including percent 
abundance of invasive taxa), diversity and feeding groups. This MMI had a Pearson correlation 
coefficient of -0.60 with the IWI. 

 

Table 7. Metrics selected for inclusion in the final MMI.  

Final MMI  
Metric Metric description 
m10 Ground-dwelling herbivorous Coleoptera richness 
m15 Ground-dwelling Formicidae diversity 
m16 Ground-dwelling Thysanoptera relative abundance 
m18 Vegetation-dwelling invasive percent total abundance 
m23 Vegetation-dwelling Araneae relative richness 
m24 Vegetation-dwelling Araneae log abundance 
m35 Vegetation-dwelling Hemiptera log abundance 
m39 Vegetation-dwelling combined Coleoptera and Formicidae evenness 

 

Performance of Final MMI 

The MMI had a mean score of 4.71 at reference sites, with a standard deviation of 0.74. Scores 
were somewhat lower and more variable at nonreference sites (mean: 3.97; standard deviation: 
0.95). Reference scores were somewhat lower in California (mean: 4.67) than Arizona (mean: 
4.91), but this difference was not significant. MMI scores differed significantly between 
reference and non-reference sites (t= -4.24, p < 0.001; Figure 3). In addition, they had a strong 
negative correlation with the IWI (Pearson’s R = -0.60; Figure 4). 
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Figure 3. MMI scores at reference and non-reference sites. Red dashed lines indicate the 10th (i.e., 
3.81) and 1st (i.e., 3.26) percentiles of reference sites. 
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Figure 4. Relationship between MMI scores and the Index of Watershed Integrity from StreamCat 
(Hill et al. 2016). 

 

Discussion 

We were able to create a multimetric index (MMI) to quantitatively measure condition in dry 
intermittent and ephemeral streams, proving the feasibility of including these streams in 
watershed management programs. This assessment index for dry streams will fulfill a major gap 
in monitoring and regulatory programs in the arid southwest. However, few steps are needed to 
reach the stage where intermittent and ephemeral streams can be fully integrated in these 
programs. 

The indices require validation with independent data, particularly at reference sites that represent 
the full range of conditions where the index may be applied. Validation activities should also 
assess inter- and intra-annual variability to fully assess the precision and repeatability of these 
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assessments. Greater taxonomic resolution may also improve observed strength of metric-
stressor relationships, as multiple species within the same families may exhibit different 
responses to the same stressor. 

These analyses were based on the best taxonomic data available at the time, which in general 
was family or genus level, with morphospecies identified to provide additional resolution. It is 
likely that additional information may be gained with greater taxonomic effort, which would 
allow incorporation of available life-history information (Steward et al. 2018; Stubbington et al. 
2019). For example, non-native Argentine ants (Formicidae: Linepithema humile) may be more 
common in ephemeral streams that receive urban runoff than in natural ephemeral streams due to 
the soil moisture preferences of this species (Holway 1998; Menke et al. 2007). Because our 
study was limited to morphospecies, we are unable to tell if we are observing this pattern in the 
San Diego region. Trait-based efforts have been productive for bioassessment applications in 
perennial streams, and would likely apply here as well. Molecular methods (e.g., DNA 
barcoding) may also enhance our ability to generate highly resolved taxonomic data for these 
biological indicators. 

To identify reference sites, we followed the approach of Ode et al. (2016), which set criteria for 
identifying reference-quality perennial and intermittent streams in California (which are 
generally higher-order than some of the ephemeral headwaters included in this study). It remains 
unknown if the criteria identified there are meaningful for the indicators we studied. Ode et al. 
(2016) emphasized screens based on measures of human activity in the upstream watershed (e.g., 
urban development) under the assumption that these activities can impact in-stream 
communities. The low frequency of flow in some of our intermittent and ephemeral sites may 
decouple or weaken the links between upstream disturbance and condition at a site, which may 
account for the relatively weak relationships we observed between metric scores or the MMI and 
land use. A reference definition that incorporates locally measured stressors and human activity, 
covering both habitat and water or sediment quality, should be considered. Our use of a 
“proximity of local activity” metric represents a first-cut approach to incorporating local 
information in defining reference sites. 

The value of multiple assemblages in bioassessment 

The final MMI incorporates metrics representing two of three assemblages we sampled: 
streambed arthropods and riparian arthropods. No bryophyte metrics were selected for the final 
MMI, largely due to the inability to account for natural variation in many of these metrics at 
reference sites. Although individual bryophyte metrics may have value as bioindicators, they do 
not at this time offer a useful tool to incorporate into monitoring programs. 

In contrast, numerous arthropod metrics showed large responses to measures of stress, and 
metrics reflecting both riparian and streambed assemblages were included in the MMI. As a 
multi-assemblage index, this MMI is comparable to hybrid algal indices developed for southern 
California (Fetscher et al. 2014; Theroux et al. 2020), based on both diatoms and soft-bodied 
algae. Multi-assemblage indices incorporate a greater diversity of lines of evidence when 
assessing condition, leading to a more complete picture, as well as superior index performance. 
However, cost concerns may make single-indicator indices (which require less sampling and 
analysis effort) desirable, and these should be explored in the future, despite their potentially 
weaker performance. 
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Our ability to quantify human stressors across the sites we sampled in the study is limited by the 
lack of data on several important stressors like hydrological alterations caused by groundwater 
extraction or the effects of cattle grazing. This limited our ability to successfully develop a single 
combined gradient that would allow us to parse reference from non-reference sites, or to evaluate 
fine-scale gradients of condition within non-reference sites. Because of this, the majority of 
metrics that correlated well with human activity did not show a consistent response to the 
stressor gradients we examined. 

Our understanding of the mechanisms driving biological responses to disturbance in dry streams 
is also limited. We can speculate why some metrics increase with stress whereas others decrease, 
but a better understanding of how upstream stressors affect local channel environments and how 
this translates into changes in local biota of dry streams is needed. For this reason, our study and 
its implications for management may be limited by our binary classification of sites (e.g., 
reference or non-reference) which limits the resolution needed to make direct links between 
individual stressors and metric responses. Although we were able to show evidence that four of 
our metrics were likely affected by human land use, we do not know the drivers (e.g., increased 
runoff, increased sedimentation, water extraction, pollution) associated with developed land use 
that underlie this relationship. Other factors including the intensity of disturbance, duration of the 
disturbance, interactions between disturbances and differences among sites (e.g., hydrologic 
regime, topography, geomorphology) may also play roles in determining how terrestrial biota 
respond to human disturbance. More quantitative methods of evaluating certain impacts (e.g., 
using wildlife cameras to measure grazing intensity) may elucidate these relationships. 

Although we have demonstrated the feasibility of assessing dry intermittent and ephemeral 
streams, further work still needs to be done to better understand the community dynamics and 
complex biotic and abiotic interactions that exist in the dry channels of nonperennial streams, 
which would give managers better confidence for incorporating these tools in their monitoring 
programs. Future studies should focus on developing and testing the causal mechanisms driving 
biological responses to better understand the direct effects of human disturbance on terrestrial 
dry stream communities.
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L2 ASSESSMENTS: VALIDATION OF THE CALIFORNIA RAPID ASSESSMENT 
METHOD MODULE FOR EPISODIC STREAMS 
Introduction 

Rapid assessment of streams allows for cost-effective and repeatable characterization of stream 
health at scales from local sites to entire watersheds to regions or statewide, yet they are 
developed with a set of assumptions that require validation with appropriate data, such as 
bioassessment indices or other L3 assessment tools. This validation gives managers assurance 
that L2 assessments provide useful information about waterbody condition, and they can 
confidently incorporate L2 assessments in a range of management decisions. 

Background on CRAM 

The California Rapid Assessment Method (CRAM) is the primary L2 assessment tool in 
California, and it is currently used in a range of monitoring and management programs. CRAM 
provides an overall Index score (ranging from 25 to 100) that indicates the general health of a 
stream or wetland and its capacity to perform important functions and services. The CRAM 
Index score is an average of four main “Attributes” of condition (i.e., buffer and landscape 
context, hydrology, physical structure, and biotic structure). Each Attribute is calculated from 
two to five metrics and submetrics (Table 6). The assessment of each metric or submetric is 
based on visual indicators surveyed during a field visit of less than half a day.  

 

Table 8. CRAM attributes and metrics with summaries of each metric. 

Attributes Metrics Metric Summary 

Buffer and  

Landscape Context 

Stream Corridor 

Continuity 

Measures presence of intact habitat upstream and 

downstream 500 m 

Percent with 

Buffer 

Percent of area surrounded by at least 5 m of buffer land 

cover 

Buffer Width Average of 8 buffer width measurements up to 250 m 

Buffer Condition Degree of soil disturbance, impact of human visitation, and 

vegetation quality (native vs. non-native) 

Hydrology Water Source Anthropogenic influence on water sources (extractions or 

inputs) within local watershed up to 2 km 

Sediment Transport Alterations to natural sediment transport processes 

Hydrologic  

Connectivity 

Access to adjacent slopes without levees, road grades, or 

other obstructions 
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Physical Structure Structural  

Patch Richness 

Number of habitat structures present from a list of potential 

patch types for episodic streams 

Topographic  

Complexity 

Complexity of micro- and macro-topographic features 

Biotic Structure Number of  

Plant Layers 

Number of plant height classes that cover at least 5% of 

the area 

Number of  

Co-dominant Species 

Total number of living plant species that comprise at least 

10% of any plant layer 

Percent  

Invasive Species 

The percent of the total number of co-dominant species 

that are listed by Cal-IPC as invasive 

Horizontal  

Interspersion 

The complexity of plant zones (species assemblages or 

mono-specific stands) 

Vertical  

Biotic Structure 

Overlap of plant layers 

 

Validation and the CRAM Development Process 

There are six steps to CRAM development, as described in Sutula et al. (2006) and outlined on 
the CRAM website (http://www.cramwetlands.org/about). These steps include: 

1. Definition phase 
2. Basic design phase 
3. Verification phase 
4. Validation phase 
5. Module production phase 
6. Ambient survey phase 

Previous work, funded by the USEPA and others, accomplished phases one through three. Initial 
field testing occurred in 2010 in association with the Solar II energy development project and the 
related Sunrise Powerlink Transportation Project. Verification was completed in 2013 and 2014 
with a survey of episodic streams in Southern and Central California. The method design phase 
involved an extensive literature review and experts were convened to provide input on indicators 
of condition. The 2010 and 2013 development efforts provided a solid foundation to launch the 
current Validation phase project and demonstrated that the episodic stream module can 
effectively differentiate between “good”, “fair”, and “poor” sites. The initial field book for 
Episodic Riverine CRAM was drafted as part of the 2013 project for field testing. While the 

http://www.cramwetlands.org/about
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initial method proved to differentiate good and poor condition systems, several thorny issues still 
needed resolution in order to finalize the field book. 

This validation effort documents relationships between CRAM results and independent measures 
of condition (specifically, L3 assessment metrics described in the preceding section) in order to 
establish CRAM’s defensibility as a representative and repeatable measure of wetland condition 
(Stein et al. 2009). This validation is an essential step in establishing CRAM’s scientific 
defensibility, which is needed to support its utility for local, state, and federal programs. 
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Methods 

Validation of the Episodic CRAM module followed the systematic process described by Stein et 
al. (2009), which prescribed several steps to validation: 

1. Identify the gradient of stress 
2. Identify Level 3 data to validate the CRAM module 
3. Identify metrics that will be calculated from the detailed Level 3 data 
4. Create conceptual models of the expected relationship between the detailed data and 

CRAM scores 
5. Identify field sites where Level 3 data are available or possible to collect 
6. Conduct CRAM assessments at the sites identified 
7. Analyze relationships between CRAM scores and Level 3 metrics 

Identifying the Gradient of Stress 

Episodic streams, like all wetlands, can be impacted by surrounding land use (Chiu et al. 2017). 
Landscape conditions can therefore be an effective predictor of wetland health (Roth et al. 1996; 
Micacchion and Gara 2008). Adjacent and upstream land cover affects wetlands and streams 
through many processes, including polluted runoff, habitat loss, and alteration of hydrologic 
dynamics. In episodic streams the impacts are more closely associated with local land use 
practices, while the entire upstream watershed has more indirect effects (Shaw and Cooper 
2008). Most studies of land use impacts on streams focus on the full watershed (e.g., Taka et al. 
2016), while for episodic streams the immediately adjacent activities seem to have more 
influence (Levick et al. 2008). This difference may be due to the flashy episodic flows in these 
systems are less connected to the upstream watershed, compared to perennial streams where 
water is always flowing from upper watershed to lower watershed. When episodic streams are 
surrounded by natural open space they are much more likely to support flora and fauna, and 
provide other important functions, such as groundwater recharge and nutrient cycling (Levick et 
al. 2008). Conversely, when they are close to developed areas such as urban or agricultural land 
covers, they are more likely to have reduced functions and species diversity (Krueper 1996; Pima 
County 2000). This study selected a range of sites along a gradient of development pressure, 
including some sites in open space preserves or parks, and others in cities and agricultural areas 
(Figure 5). 

Identify Level 3 Data 

We used the three biological indicators described in the preceding section: terrestrial arthropods 
in the dry streambed, arthropods on riparian vegetation, and bryophytes in the channel. As part of 
an earlier literature review (Mazor et al. 2019a), these assemblages were identified as having 
high potential for use as biological indicators because of their ease of sampling and plausible 
relationships with environmental quality in dry stream channels. 

Identify Metrics from Level 3 Data 

As described in the preceding section, the species richness, abundance of individuals, diversity, 
and evenness of terrestrial arthropods and bryophytes populations were analyzed to establish 
condition metrics. Some metrics combined taxonomic groups for analysis; for example, 
Coleoptera (beetles) and Formicidae (ants) were combined into one metric that measures the 
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diversity or species richness of both groups. As described a multimetric index (MMI) was 
created from a suite of high-performing metrics that characterized the two arthropod assemblages 
(no bryophyte metrics were included in this index). 

Create Conceptual Models 

The expected relationship between CRAM Index and Attribute scores and Level 3 data were 
predicted a priori for each Level 3 indicator. The establishment of a priori relationships between 
CRAM attributes and Level 3 metrics was complicated because the level 3 methods were being 
developed concurrently with CRAM validation. The development team relied on other terrestrial 
invertebrate studies to inform the predictions. Generally, we assumed that there would be a 
positive correlation between CRAM Attributes and Index scores and invertebrate population 
metrics, except for taxa that are more responsive to human disturbance. The MMI was predicted 
to have a positive correlation with CRAM scores since MMIs are designed to be responsive to a 
similar condition gradient from highly disturbed to pristine reference condition. 

Identify Field sites 

To complete the validation process, the development team selected sites across California and 
Arizona with a range of anticipated condition. This project partnered with the Arizona 
Department of Environmental Quality to include the state of Arizona in the development process, 
allowing for the use of this CRAM module in both states. We selected sites in several regions, 
including the Mojave Desert, Sonora Desert, Owens Valley, Modoc, the Central Valley, the 
Central Coast of California, Northern Arizona, Central Arizona, and Western Arizona. CRAM 
data in the South Coast of California was collected under related projects. Altogether, these sites 
represented gradient of human disturbance and stress. Most sites were on public land, with some 
located within private preserves or other privately-owned lands. A total of 56 sites were analyzed 
(Figures 2-4). 
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Figure 5. Map of all sites selected for L2 sampling and analysis. 
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Figure 6. Map of sites selected in California for L2 sampling and analysis. 
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Figure 7. Map of sites selected in Arizona for L2sampling and analysis. 
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Conduct Field Assessments 

Field assessments were conducted using the Episodic CRAM module (version 2.0, February 
2018) at 35 sites for this project during 2018 and 2019 (Figure 8). Project partners conducted 15 
assessments in Arizona during 2018. CRAM was conducted at the sites in Southern California in 
2018 and 2019 as well. All assessments followed the quality assurance procedures outlined in the 
CRAM QA Plan (CWMW 2016) and the QAPP for this project (SCCWRP 2018). These same 
sites were assessed during the same time period by CSUMB researchers using the Level 3 
arthropod and bryophyte assessment tool described in the previous section. 

 
Figure 8. Conducting CRAM in a dry wash. 

 

Analyze relationships between CRAM scores and Level 3 metrics 

Spearman rank correlations were conducted for the CRAM Index score and each of the CRAM 
Attribute scores relative to the terrestrial arthropod and bryophyte metrics and MMI. The non-
parametric Spearman rank correlation was used because data did not meet assumptions of 
bivariate normality (Dodge 2010). Each metric within CRAM was treated as independent, so p-
values were calculated separately for each CRAM metric and independent measures (arthropod 
and bryophyte metrics). We also evaluated correlations between CRAM and climate and 
geographic variables and land use (EPA’s StreamCat database; Hill et al. 2016). Climate and 
geographic variables included mean temperature, maximum temperature, elevation, and 
watershed area. Land use related variables included an Index of Watershed Integrity (IWI), Index 
of Catchment Integrity, measures of inorganic fertilizer application and manure application. 
These last two indicators serve as a proxy for agricultural land use, and while there isn’t typically 
regular rainfall to transport fertilizers from fields into streams, episodic flow events could still 
bring contaminants from farmed areas into stream systems. The data were examined among 
reference sites (least disturbed) and non-reference sites. A simple T-test was used where the data 
conformed to a normal distribution, and in cases of non-normality, a non-parametric Wilcoxon 
Two Sample Test was used. This helped to confirm that CRAM assessments statistically 
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differentiated reference and non-reference sites, which were designated a priori based on 
landscape factors. Landscape variables were tested between reference and non-reference to 
determine if geographic factors (elevation, temperature, or watershed area) affected the outcome 
of the assessments. Correlations among StreamCat variables and CRAM Index and Attribute 
scores were investigated. All calculations were conducted using SAS 9.3 software (SAS Institute 
Inc. 2011). 

Results 

An effective rapid assessment method must be responsive to a range of conditions and be 
sensitive to human disturbance (Sutula et al. 2006; Stein et al. 2009). The CRAM Index score is 
a composite of the four Attribute scores and represents the overall ecological condition of the 
wetland. The CRAM tool generates a minimum value of 25 and a maximum value of 100. The 
CRAM Index scores collected for this project ranged from 28 to 100, with a median score of 78 
(Figure 9). We determined that the scores did not biased high or low values, although data were 
moderately skewed (Bulmer 1979) towards higher scores (skewness = -0.96). The range of 
scores collected from our survey (20-100) confirms the responsiveness of the Episodic CRAM 
module to score a full range of expected conditions within southwest United States ephemeral 
streams.  

 

 

Figure 9. Histogram of CRAM Index scores (n=56). 
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A full range of scores (minimum of 25 and the maximum of 100) were measured for each 
CRAM Attribute except for hydrology (Buffer and Landscape Context 25-100, Hydrology 33-
100, Physical Structure 25-100, and Biotic Structure 25-100) (Figure 10). These data support our 
assumption that each Attribute is responsive to the varying conditions of Ephemeral Streams.  

 

  

  
 

 

Figure 10. Histograms showing the distribution of data for each CRAM Attribute at all sites 
(n=56). 
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Figure 11. Histogram showing the distribution of data for the MMI at all sites (n=56). 

 

The multimetric Index (MMI) is a composite of several arthropod metrics, and it is designed to 
discriminate between sites with minimal human activity (i.e., reference sites) and more disturbed 
sites (see previous section). MMI scores ranged from 2 to 6.5, with a median of 4.5 (Figure 11). 
The distribution of scores was not skewed (skewness = -0.13).  

The overall CRAM Index score and each Attribute score were tested for significant correlations 
with Level 3 data, including several individual arthropod and bryophyte metrics as well as the 
MMI. Correlations among CRAM Index and Attribute scores and arthropod metrics are 
presented in Table 7. For each CRAM parameter the strongest correlation was selected (largest 
absolute value of the correlation coefficient). Collection protocol for arthropod metrics are noted 
with a T for “trap” or a V for “vegetation” (see other sections of this report for terrestrial 
arthropod collection methods). Taxa included within each metric are noted: Co for Coleoptera 
(beetles); Fo for Formicidae (ants); and Ar for Araneae (spiders). Diversity, abundance, and 
richness indices were evaluated and identifies as: Di for Shannon Diversity; La for the log of the 
abundance of individuals of those taxa; and Ri for species richness. The metric most often 
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correlated with CRAM scores was the T_CoFo_Di: diversity of Coleoptera and Formicidae taken 
from ground traps. The CRAM Index, Buffer and Landscape Context Attribute, and Physical 
Structure Attribute all had the strongest correlation with T_CoFo_Di among all of the arthropod 
metrics (Table 9, Figure 12 to Figure 13). There was only one top correlation with vegetation 
arthropod sampling. Specifically, the V_FoAr_La (log of the abundance of Formicidae and 
Araneae) was negatively correlated with the Hydrology Attribute. The Biotic Structure Attribute 
was correlated with richness of ground trapped Coleoptera, Formicidae, and Araneae species 
(T_CoFoAr_Ri). 

Table 9. Spearman’s rank correlations (ρ) among CRAM parameters and various Level 3 
independent variables. 

CRAM index or attribute score L3 Metric Sample Number (N) Correlation 

Coefficient 

P-Value 

Index Score T_CoFo_Di 56 0.61 <.0001 

Buffer and Landscape Context T_CoFo_Di 56 0.51 <.0001 

Hydrology V_FoAr_La 56 -0.54 <.0001 

Physical Structure T_CoFo_Di 56 0.59 <.0001 

Biotic Structure T_CoFoAr_Ri 56 0.51 <.0001 
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Figure 12 demonstrates the relationship between the CRAM Index Score and the Shannon 
Diversity of Coleoptera and Formicidae. Some sites that had relatively high rainfall were 
included in the analysis but marked separately (open circles). When the analysis was run without 
these wetter sites there was no statistically significant difference in the correlation. 

 

 
Figure 12. Correlation plot of CRAM Index score vs. T_CoFo_Di. 

 

Figure 13 presents the most signficant relationship among each CRAM Attribute and the 
arthropod metrics. Again, sites with higher precipitation are noted as open circles. Only the 
Biotic Structure metric analysis found wetter sites to clustered at the higher end of both CRAM 
scores and the arthropod metric (species richness of Coleoptera, Formicidae, and Araneae). Most 
of the Attributes were positively correlated with their top arthropod metric. The Hydrology 
Attribute, however, was most strongly negatively correlated with the log of abundance of 
Formicidae and Araneae.  
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Figure 13. Correlation plot of CRAM Attributes vs. terrestrial arthropod metrics. 

The CRAM scores were tested for correlations with the MMI (Table 10). The CRAM Index 
score and all of the CRAM Attribute scores were found to be significantly correlated with the 
MMI. Hydrology had the strongest correlation, while Physical Structure had the weakest 
correlation with the MMI. 
Table 10. Spearman’s rank correlations (ρ) for CRAM comparisons to the MMI. 

CRAM Parameter L3 Metric Sample Number 

(N) 

Correlation 

Coefficient 

P-Value 

Index Score MMI 51 0.51 0.0001 

Buffer and Landscape Context MMI 51 0.41 0.002 

Hydrology MMI 51 0.74 <.0001 

Physical Structure MMI 51 0.31 0.03 

Biotic Structure MMI 51 0.40 0.003 
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Figure 14 below shows the CRAM Index scores plotted with the MMI scores for each site. The 
two variables were moderately and significantly correlated. While a regression analysis is not 
appropriate, as these measures are independent of each other, there is a definite trend of higher 
CRAM scores along with higher MMI scores. The significant correlation among indices 
confirms that both methods describe the range of condition among the sample sites while the 
variability in the correlation suggests (similar to other validation efforts in california) that the 
two metrics responds differently to site specific variables (Sutula et al. 2006; Stein et al. 2009). 
Such variablity among Level 2 and Level 3 metrics is anticipated and leads to a robust toolbox of 
assessment tools.  

 

Figure 14. Correlation plot of CRAM Index vs. MMI. 

 

Each CRAM Attribute was also tested for a significant correlation with the MMI, and all four 
Attributes were found to be positively correlated (Figure 15). It is evident in these plots that 
Hydrology has the tightest relationship with the MMI, while the other Attributes have a weaker, 
but significant relationship. 
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Figure 15. Correlation plots of CRAM Attributes vs. MMI 

 

Correlations between CRAM Index and Attribute scores and watershed land use data (percent 
impervious, percent urban, and percent agriculture) were tested. The entire upstream watershed 
was included in these calculations. The percent of watershed that was impervious (i.e., paved or 
covered with buildings) was the land use metric most closely correlated with CRAM scores 
(Figure 16, Figure 17). Biotic Structure had the strongest correlation with the percent urban area 
in the watershed (Figure 17). 
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Figure 16. Correlation plot of CRAM Index vs. Percent Watershed Imperviousness. 
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Figure 17. Correlation plots of CRAM Attributes vs. Land use Metrics. 

The sites sampled in this study were characterized as reference sites (relatively undisturbed 
watersheds and local land use), and non-reference sites (more impacted by human activities). We 
tested whether CRAM scores and land use characteristic were statistically different between 
reference and non-reference sites. The CRAM Index and Attribute scores between reference and 
non-reference sites were statistically different (Table 11). The natural variables such as 
precipitation, elevation, temperature, and watershed area were not significantly different between 
reference and non-reference sites. 
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Table 11. Reference vs. Non-reference Site Statistics (significant P-values in bold). 

Variable Test Type T- or Z-statistic P-value 

CRAM Index Wilcoxon Two-Sample Z = 4.2353 <0.0001 

Buffer and Landscape Wilcoxon Two-Sample Z = 4.1603 <0.0001 

Hydrology Wilcoxon Two-Sample Z = 4.3730 <0.0001 

Physical Structure Wilcoxon Two-Sample Z = 2.3810 0.0086 

Biotic Structure Student’s T T = -2.41 0.0198 

Precipitation in Catchment Student’s T T = -0.45 0.6563 

Elevation (natural log transformed) Student’s T T = -0.64 0.5284 

Mean Temperature in Catchment (natural log 

transformed) 

Student’s T T = 0.17 0.8641 

Maximum Temperature in Catchment Wilcoxon Two-Sample Z = 0.1738 0.8621 

Watershed Area (km2) Wilcoxon Two-Sample Z = -0.4981 0.6184 

 

The plots below give a visual representation of the differences in CRAM scores between 
reference and non-reference sites (Figure 18, Figure 19). 

Figure 18. Boxplot of CRAM Index scores for reference and non-reference sites. 

 



41 

  

  

Figure 19. Boxplots of CRAM Attribute scores for reference and non-reference sites. 

The environmental variables were not significantly different between reference and non-
reference sites, as shown in the plots below (Figure 20). 
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Figure 20. Boxplots of StreamCat variables at the catchment level for reference vs. non-reference 
sites. Note that these plots show raw data, and some variables were transformed for analysis. 

Discussion 

The goal of this project was to validate the Episodic Riverine CRAM module. To ensure that the 
CRAM method meets established CRAM development guidelines (Stein et al. 2009), the CRAM 
Validation team set out to confirm that a CRAM module for episodic systems met a set of key 
criteria (i.e., responsiveness to a range of condition, correlate with Level 3 indicators of 
condition). This validation exercise found the CRAM module to generate scores which 
appropriately represent the full range of wetland conditions found within the ecoregion. The tool 
was also found to correlate with other trophic or function specific indicators of condition.  

The site selection process ensured that the sampled ephemeral and intermittent streams 
represented the full range of ecological condition within California and Arizona. The sites in the 
dataset also represent a range of climatic conditions within the drier areas of the state that contain 
episodic streams. By partnering with scientists throughout the two states with extensive 
experience in arid episodic streams, we have developed a tool that can be used successfully by 
California and Arizona wetland practitioners.  
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The results showed that the CRAM Index and Attribute scores encompassed the full range of 
potential conditions in episodic streams. Most of the Attributes had scores ranging from the 
minimum of 25 to the maximum of 100, except for Hydrology, which had a minimum score of 
33. These results confirm that the method is measuring the variation in condition from extremely 
degraded to a high-functioning least disturbed ecosystem. For the Hydrology Attribute, no site 
received D scores for all metrics, but each metric displayed the full range of condition across all 
sites (i.e., for each Hydrology metric there were sites that scored A, B, C, and D).  

The Buffer and Landscape Context and Hydrology Attributes were skewed towards higher 
scores, while Physical and Biotic Structure had more evenly distributed values. The Buffer and 
Hydrology Attributes are largely influenced by local land use, while scores for the other two 
Attributes are influenced by climate, geology, and landscape position. 

It is useful to develop a conceptual model of what drives condition within the specific wetland 
class from which to predict and test relationships between CRAM scores and various Level 3 
indicators of condition. 

Our analysis found that CRAM Index scores were significantly correlated (as expected) with the 
MMI and the diversity of Coleoptera and Formicidae, as well as several other arthropod metrics. 
The CRAM Attributes Buffer and Landscape Context and Physical Structure were also 
significantly correlated with the diversity of Coleoptera and Formicidae. The Biotic Structure 
Attribute had the strongest correlation with the species richness of Coleoptera, Formicidae, and 
Araneae. Hydrology had the strongest correlation with the log of the abundance of Formicidae 
and Araneae, an unexpected negative correlation. However, Hydrology was strongly and 
positively correlated with the MMI (Figure 15) and the diversity of Coleoptera and Formicidae 
(Figure 21), so that confirms that the Hydrology attribute is measuring a true difference in 
overall condition between sites. These correlations make sense because terrestrial arthropods are 
responsive to disturbance in streams (Mazor et al. 2019a). 

 
Figure 21. Correlation plot of CRAM Hydrology Attribute vs. T_CoFo_Di. 
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Since the terrestrial arthropod MMI was developed to respond to disturbance and stress in the 
stream, CRAM attributes that evaluate similar functions and areas of condition should reflect a 
similar gradient of impacts. Both the overall Index score and all of the CRAM Attribute scores 
were correlated with the MMI scores. The Buffer and Landscape Context Attribute measures 
anthropogenic impacts from surrounding land use. Similarly, the MMI is sensitive to those same 
impacts. The Hydrology Attribute evaluates the sources of water and potential contamination, the 
artificial manipulation of water flow, and the connection to adjacent transitional habitat. These 
factors similarly affect the composition of the terrestrial arthropod communities. The Physical 
Structure Attribute measures the diversity of topography and structures that create habitat, which 
facilitate diverse habitat for terrestrial arthropods. The Biotic Structure Attribute looks at the 
health of the plant community based on structural and species diversity, and the MMI reflects the 
response of the arthropod communities to these habitat niches. 

The goal of this CRAM module validation exercise was to document predicted correlations 
between multiple L3 metrics and CRAM attributes along a complete gradient of condition which 
effect ecological functions and services. It is not the intent of this exercise to develop a condition 
method that responds exactly (i.e., high Spearman’s Rho values), to the other independent 
variables of condition (landscape and arthropods) as this would negate the need for developing a 
new method of assessment. Specifically, CRAM is meant to integrate multiple wetland functions 
into a single condition assessment rather than focus on specific functions, as represented by the 
L3 data. The Spearman’s Rho values between CRAM and independent variables (ranging from 
0.4 – 0.6) along with significant P-values of less than 0.05 that were found in this study 
document the predicted correlation between habitat condition and species population dynamics 
without being redundant. 

Conclusions 

It is the conclusion of the development team that the goals of validation have been met (Stein et 
al. 2009) and the Episodic Riverine CRAM module meets the goals defined by the Level 2 
Committee for CRAM (CWMW 2011). Our analysis shows a significant correlation between 
CRAM Index and Attribute scores and Level 3 intensive measures of condition and function. 
The Episodic Riverine CRAM module provides a meaningful and accurate assessment of 
wetland condition across the states of California and Arizona. 
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L1 ASSESSMENTS: LANDSCAPE MODELS FOR ESTIMATING THE EXTENT AND 
CONDITION OF INTERMITTENT AND EPHEMERAL STREAMS 
Introduction 

Level 1 (L1) assessment tools provide the most rapid ways to assess the condition and extent of 
aquatic resources across large geographic areas. Currently available resources, such as the 
National Hydrography Dataset Plus (NHD Plus; McKay et al. 2012) provides a good foundation 
for conducting L1 assessments, but is challenging to use in assessing ephemeral and intermittent 
streams due to limitations in the underlying data. First, the NHD Plus does not distinguish 
between intermittent and ephemeral streams. Second, these designations are notably inaccurate, 
with error rates exceeding 50% in certain regions (Mazor et al. 2012). 

This study presents an opportunity to adapt these tools for L1 assessments in two ways: First, 
we can develop models to predict appropriate L2 California Rapid Assessment Method 
(CRAM) module (episodic vs. traditional riverine) and L3 bioassessment tools (terrestrial vs. 
benthic invertebrates) for NHD Plus stream segments in California and Arizona. This model 
will not only allow estimation of the extent of episodic streams in both states, it will also 
provide guidance for practitioners to anticipate the appropriate tools that might be needed prior 
to conducting field visits. Second, we can evaluate levels of landscape alteration and other 
disturbances in these episodic streams using thresholds identified in the previous section to 
determine the extent of likely healthy or impacted episodic streams.  

Different habitats require different types of assessment tools, and L1 assessments can create 
maps that assist practitioners in determining which tools may be appropriate prior to visiting a 
site in the field. We created models to conduct two different types of L1 assessments: one for 
the highly ephemeral streams covered by the L2 episodic CRAM module, and one for the dry 
intermittent and ephemeral streams covered by L3 bioassessment tools based on terrestrial 
arthropods and bryophytes. Thus, the L1 assessment based on the L3 tools targets a broader set 
of streams than the L1 assessment based on the L2 tool. Both assessments were conducted in 
California and Arizona, with unique models built for each state. 

Our goals were to use these models to 1) create maps showing the location of likely ephemeral 
or intermittent streams in California and Arizona, and 2) estimate the likely extent of ephemeral 
or intermittent streams in good ecological condition. To do this, we first assembled a data set of 
locations where the appropriate L2 and L3 tools were determined based on field visits. Then, we 
explored two modeling approaches (generalized linear models and random forest models) to 
predict the appropriate tool based on landscape or modeled natural hydrology. We selected the 
best model based on its accuracy. We then applied this model to streams in California and 
Arizona, and calculated the extent of ephemeral streams (i.e., streams requiring the episodic 
module) in each state. Finally, we calculated the extent of ephemeral streams where disturbance 
levels exceeded thresholds associated with poor assessment scores. 
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Methods 

Data aggregation 

This analysis requires two types of data: sites where the type of resource (e.g., episodic vs. 
traditional riverine wetlands) is known, and environmental data that could be used to predict 
resource type in a statistical model. 

Aggregating sites with known appropriate assessment tools 

L2 assessment locations 

Sites were classified into two categories for L2 assessments: Sites where the episodic CRAM 
module was required vs. sites where the traditional riverine CRAM module was required. These 
two categories approximately correspond to ephemeral streams and intermittent/perennial 
streams, respectively. 

In both California and Arizona, sites where the episodic CRAM module had been implemented 
as part of this study and related studies were used for L1 model development. In California, the 
eCRAM database provided a large data set of over 2000 sites where the traditional riverine 
CRAM module had been used. In Arizona, such data were not available; instead, we used site 
locations where traditional bioassessment sampling for benthic macroinvertebrates had occurred 
under State and National assessment programs, assuming that the traditional riverine CRAM 
module would be appropriate at these locations. Sites that were not located on NHD Plus 
flowlines were excluded from analysis, and sites of the same sample type located on the same 
flowline were treated as a single observation.  

L3 assessment locations 

Sites were classified into three categories for L3 assessments: Sites where aquatic indicators 
(such as BMI) were appropriate (which approximately corresponds to perennial streams), sites 
where terrestrial indicators were appropriate (which approximately corresponds to ephemeral 
streams and short-duration intermittent streams), and sites where both indicators are appropriate 
(which approximately corresponds to long-duration intermittent streams). 

In both California and Arizona, sites where sampling for terrestrial arthropods had occurred as 
part of this study and related studies were used in model development. In addition, we queried 
state databases for bioassessment data to determine where BMI sampling had occurred in the 
past. In California, site evaluation data from probabilistic surveys was also reviewed; these data 
indicate when sites were deemed appropriate for BMI sampling, and when sites were too dry for 
these aquatic indicators. Catchments containing exclusively BMI samples were classified as 
appropriate for aquatic indicator-based L3 assessment tools; catchments containing exclusively 
terrestrial arthropod samples were classified as appropriate for “dry” L3 assessment tools; and 
catchments containing both sample types were classified as appropriate for both types of L3 
assessment tools. Sites that were not located on NHD Plus flowlines were excluded from 
analysis, and sites of the same sample type located on the same flowline were treated as a single 
observation.  
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Predictor data 

To acquire environmental predictor data, we first snapped each location to the closest stream 
segment in the NHD plus and determined its COMID (i.e., the unique identifier of each 
segment). Based on the COMID, we could then associate data points with other data sets. 

We used two sources of environmental data to predict the appropriate CRAM module at each 
site: 1) landscape characteristics of site watersheds and local catchments, and 2) natural modeled 
hydrology. Landscape metrics were derived from the StreamCat dataset (Hill et al. 2016), which 
covers nearly every stream segment in the NHD Plus. We selected metrics likely to relate to 
stream hydrology (Table 10), including landcover, geology, climate, and estimated runoff. In 
California, we supplemented StreamCat with additional data sources, including habitat 
information from the USGS GAP/LANDFIRE Land Cover data set, and plant community 
classifications from the Revised Hierarchy for Natural Vegetation Classification and Standard 
(USNVC). In addition, we supplemented California data with predicted natural flow classes from 
the California eFlows database (Lane et al. 2020), and the USGS database of modeled natural 
monthly flows (Miller et al. 2018). For the latter, we calculated the 10th percentile of annual 
natural flows for 1985 to 2015 to estimate the magnitude of low flows. A total of 103 predictors 
were considered for analysis (Table 12). 

Table 12. Environmental predictors evaluated in the models. Asterisks indicate that the variable 
was evaluated at both the watershed and catchment scales. 

Predictor code Full Name of Predictor Predictor Source (table) 
Al2O3* Mean aluminum oxide StreamCat (GeoChemPhys) 

BFI* Base Flow Index StreamCat (BFI) 

CaO* Mean calcium oxide StreamCat (GeoChemPhys) 

CCHEM_v2 Catchment chemistry StreamCat (ICI_IWI_v2) 

CCONN_v2 Catchment connectivity StreamCat (ICI_IWI_v2) 

CHABT_v2 Catchment habitat provision StreamCat (ICI_IWI_v2) 

CHYD_v2 Catchment hydrologic regulation component score StreamCat (ICI_IWI_v2) 

Clay* Clay soil raster units (%) StreamCat (STATSGO) 

CompStrgth* Compressive strength (%) StreamCat (GeoChemPhys) 

CSED_v2 Catchment sediment regulation StreamCat (ICI_IWI_v2) 

CTEMP_v2 Catchment temperature regulation StreamCat (ICI_IWI_v2) 

Elev* Mean elevation StreamCat (Elevation) 

Fe2O3* Mean iron oxide StreamCat (GeoChemPhys) 

HydrlCond* Hydrologic conductivity (%) StreamCat (GeoChemPhys) 

ICI_v2 Index of catchment integrity StreamCat (ICI_IWI_v2) 

IWI_v2 Index of watershed integrity StreamCat (ICI_IWI_v2) 

K2O* Mean potassium oxide StreamCat (GeoChemPhys) 

MgO* Mean magnesium oxide StreamCat (GeoChemPhys) 

N* Mean nitrogen StreamCat (GeoChemPhys) 

Na2O* Mean sodium dioxide StreamCat (GeoChemPhys) 

Om* Organic Matter raster units (%) StreamCat (STATSGO) 
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P2O5* Mean phosphorous pentoxide StreamCat (GeoChemPhys) 

PctBl2011* Bedrock (%) Stream Cat (NLCD) 

PctConif2011*  Coniferous/evergreen forest (%) Stream Cat (NLCD) 

PctCrop2011* Row crop (%) Stream Cat (NLCD) 

PctDecid2011* Deciduous forest (%) Stream Cat (NLCD) 

PctGrs2011*  Grass/herbaceous (%) Stream Cat (NLCD) 

PctHay2011* Pasture/hay (%) Stream Cat (NLCD) 

PctHbWet2011* Herbaceous wetland (%) Stream Cat (NLCD) 

PctIce2011* Ice/snow (%) Stream Cat (NLCD) 

PctMxFst2011* Mixed forest (%) Stream Cat (NLCD) 

PctOw2011*  Open water (%) Stream Cat (NLCD) 

PctShrb2011*  Shrub/scrub (%) Stream Cat (NLCD) 

PctUrbHi2011* Developed, high intensity (%) Stream Cat (NLCD) 

PctUrbLo2011* Developed, low intensity (%) Stream Cat (NLCD) 

PctUrbMd2011* Developed, medium intensity (%) Stream Cat (NLCD) 

PctUrbOp2011* Developed, open (%) Stream Cat (NLCD) 

PctWdWet2011* Woody wetland (%) Stream Cat (NLCD) 

Perm* Permeability units (cm/hr) StreamCat (STATSGO) 

Precip8110* Average annual normal precipitation from 1981-2010 

(mm) 

StreamCat (PRISM) 

RckDep* Depth of bedrock soils (cm) StreamCat (STATSGO) 

Runoff* Mean runoff (mm) StreamCat (Runoff) 

S*  Mean sulfur StreamCat (GeoChemPhys) 

Sand* Sand raster units (%) StreamCat (STATSGO) 

SiO2* Mean silicon dioxide StreamCat (GeoChemPhys) 

Tmax8110* Average maximum air temperature from 1981-2010 

(°C) 

StreamCat (PRISM) 

Tmean8110* Average mean air temperature from 1981-2010 (°C) StreamCat (PRISM) 

Tmin8110* Average minimum air temperature from 1981-2010 

(°C) 

StreamCat (PRISM) 

WCHEM_v2 Watershed chemistry StreamCat (ICI_IWI_v2) 

WCONN_v2 Watershed connectivity StreamCat (ICI_IWI_v2) 

WHABT_v2 Watershed habitat provision StreamCat (ICI_IWI_v2) 

WHYD_v2 Watershed hydrologic regulation component score StreamCat (ICI_IWI_v2) 

WSED_v2 Watershed sediment regulation StreamCat (ICI_IWI_v2) 

WtDep* Water table depth of soil (cm) StreamCat (STATSGO) 

WTEMP_v2 Watershed temperature regulation StreamCat (ICI_IWI_v2) 

California models only 
Habitat Habitat type (level 3 formation) Gap-USGS 

meanp10Q Mean natural monthly flow at the 10th percentile from 

1985 to 2015 

NaturalMonthlyFlow-USGS 
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Natural flow regime class Natural flow regime class Lane et al. (2020) 

 

  



50 

Development of random forest models to predict stream type 

We used random forest models to predict appropriate L2 and L3 assessment tools. Random 
forest is a machine learning approach based on creation of a large number of decision-trees that 
split data based on dichotomous decisions. Random forest is popular in environmental science 
due to its handling of non-linear relationships and complicated interactions among variables. 

We determined predictors through a simple stepwise process. First, we ran all the predictors 
(except for natural monthly flows, eFlow hydrologic regime classes, and NLCD ice land cover, 
due to incomplete data coverage) through an “unbalanced” random forest model with 1,500 trees 
(unbalanced because one class, such as riverine CRAM assessments, were more heavily 
represented in the calibration data than other classes). Next, we repeated this process with 
stratified samples to balance the data and select the best stratification (one that would produce 
the least amount of out of bag (OOB) error and class error). For the L2 models in both states, we 
selected an episodic stratum size of 20 samples and a riverine stratum size of 40 samples due to 
the relatively low number of episodic sites. For the L3 models, we selected a stratum size of 22 
for each of the three classes in Arizona, and 150 for California. We then reviewed the partial 
dependence plots for all the predictors and removed any land use predictors with less than 5% 
cover. Finally, we removed negative importance predictors and ran a balanced random forest 
model with 1500 trees to obtain our final model.  

We decided on this process to improve the OOB and class errors even though random forest 
models with large numbers of environmental predictor variables tend to perform just as well as 
pre-selected variables or stepwise process for selecting predictors (Fox et al. 2017), and are 
robust to overfitting. For each model, we calculated accuracy as the out-of-bag error rate, as well 
as Cohen’s Kappa statistic (which accounts for the likelihood of getting correct classifications by 
random chance). We also calculated within-class error rates for each model, and summarized the 
top 5 most important variables. 

Application of models 

One of the primary goals of L1 assessments is to estimate the extent of aquatic resources in a 
region. To achieve this goal, we applied the models described above to every stream in 
California and Arizona included in the StreamCat dataset (Hill et al. 2016). This application 
results in the classification of all streams as episodic or riverine (for L2 assessments); or as 
requiring terrestrial, aquatic, or both types of indicators (for L3 assessments). 

Predicting ecological condition of ephemeral and episodic catchments 

In addition to estimating the extent of aquatic resources, a second major goal of L1 assessments 
is to estimate the ecological condition of these resources. In order to do so, we identified levels 
of watershed alteration associated with high and low likelihood of good conditions, and used 
these as thresholds to classify streams that were previously predicted to be ephemeral or 
episodic, or to require terrestrial indicators. Thresholds were determined by evaluating the 
distribution of condition scores (CRAM scores for L2 condition, and bioassessment index scores 
for L3 condition) at reference sites (Table 13). 
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Table 13. Thresholds for identifying dry streams in good, intermediate, or poor conditions. 

Conditions L2 scores L3 scores 
Good Above 71.9 Above 3.81 
Intermediate Between 52.6 and 71.9 Between 3.26 and 3.81 
Poor Below 52.6 Below 3.26 

 
We then used quantile regression to predict the median L2 and L3 score based on the percent of 
developed land in the contributing watershed (derived from StreamCat; Hill et al. 2016), 
providing thresholds for percent development where good, intermediate, and poor conditions are 
likely. Quantile regression is appropriate for exploring ecological relationships where stressors 
are predicted to limit biological condition. We applied these landscape thresholds to all episodic 
stream segments to predict L2 condition, and to all intermittent or ephemeral stream segments to 
predict L3 condition. We then tabulated the extent of stream miles in each condition class for 
each state. 

Results 

Data aggregation 

For the L2 models, a total of 34 episodic and 2035 riverine sites were identified in California. 
Much smaller numbers were identified in Arizona, where we found 22 episodic sites and 213 
presumed riverine sites (Figure 22). 

For the L3 models, we had 2939 locations were aquatic indicators were appropriate, 7095 sites 
where terrestrial indicators were appropriate (largely, sites that were too dry for traditional 
bioassessment sampling in probabilistic surveys), and 400 sites where both indicators were 
appropriate. In Arizona, we had 213 sites where aquatic indicators were appropriate, 24 where 
terrestrial indicators were appropriate, and 28 where both types of indicators were appropriate 
(Figure 23). 

  

Figure 22. L2 assessment site locations used to calibrate L1 models in California and Arizona. 
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Figure 23. L3 assessment site locations used to calibrate L1 models in California and Arizona. 

 

Model Characteristics 

Overall the models for California were more accurate than the models for Arizona, likely due to 
the much larger number of data points used to calibrate the models (Table 14). In fact, Cohen’s 
Kappa statistics for both Arizona models showed that model predictions agreed with the true 
classes only slightly better than chance. In contrast, the California models predicted the true class 
somewhat (for the L3 models) or substantially (for the L2 models) better than chance. For both 
states, models were more successful at predicting the wetter habitats (i.e., riverine for the L2 
models, and aquatic indicators for the L3 models). Both California models relied more extensively 
on predictors based on precipitation, whereas the Arizona models made more use of temperature-
related predictors. 
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Table 14. Summary of models to predict appropriate L2 and L3 tools. Overall accuracy is 
measured as the out-of-bag error rate (lower is better), as well as Cohen’s Kappa statistic (higher 
is better). Top five predictors in each model are indicated in the final column. Predictors followed 
by (cat) are calculated at the catchment scale in StreamCat (Hill et al. 2016); all other predictors 
are calculated at the watershed scale. 

  Accuracy   
    Overall Kappa Class-wise error   Top predictors 
L2 models   Episodic Riverine     

 California 1.79 0.74 20.6 1.5   
Precipitation, precipitation (cat), Habitat, % 
bedrock, organic matter content in soil (cat) 

 Arizona 5.96 0.14 31.8 3.3   
Elevation, mean temperature, max temperature, 
min temperature, mean temperature (cat) 

L3 models   Aquatic Both Terrestrial   

  California 27.7 0.48 26.7 48.3 27.5  
Precipitation, % coniferous forest, watershed 
area, max temperature, precipitation (cat) 

  Arizona 21.3 0.13 19.4 25.0 33.3   
Base flow index (cat), elevation, base flow index, 
min temperature, mean temperature 

 

Application of models 

Despite the relatively poor accuracy of some of the models, they nonetheless produced maps that 
were consistent with expectations. For example, in California, episodic streams dominated the 
Sonoran and Mojave Deserts, as well as portions of the San Joaquin Valley and the Modoc 
Plateau in the northeastern part of the state (Figure 24). In Arizona, much of the southwestern 
part of the state was predicted to be episodic, with the exception of the mainstem of the Gila 
River (Figure 25). The predominance of riverine streams in eastern Arizona likely reflects the 
lack of such streams in that region in the calibration data set (Figure 22).  
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Figure 24. Predicted L2 assessment tool (episodic vs. riverine) for catchments in California. 
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Figure 25. Predicted L2 assessment tool (episodic vs. riverine) for catchments in Arizona. 
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Figure 26. Predicted L3 assessment tool (aquatic vs. terrestrial vs. both) for catchments in 
California. Streams where terrestrial indicators are recommended are assumed to be ephemeral or 
short-term intermittent; streams where aquatic indicators are recommended are assumed to be 
perennial streams; and streams where both are recommended are assumed to be long-term 
intermittent. 
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Figure 27. Predicted L3 assessment tool (aquatic vs. terrestrial vs. both) for catchments in 
Arizona. Streams where terrestrial indicators are recommended are assumed to be ephemeral or 
short-term intermittent; streams where aquatic indicators are recommended are assumed to be 
perennial streams; and streams where both are recommended are assumed to be long-term 
intermittent. 

  

Predicted conditions of episodic and ephemeral catchments 

Quantile regressions showed a stronger relationship between watershed development and L3 
scores than L2 scores. Although both showed negative relationships, there was considerably 
more variability in L2 scores, and the regression model had much weaker significance than the 
L2 model (i.e., p <  0.1 vs. p < 0.01; Table 15). Notably, a few sites with highly developed 
watersheds had very high L2 scores. However, thresholds for landscape derived from these 
models were not terribly different (Table 16); that is, for both indices, good conditions were most 
likely when less than ~30% of the watershed was developed, and poor conditions were most 
likely when more than ~50% of the watershed was developed. 

Application of these thresholds to non-perennial catchments predicted by the models described 
above showed that many streams in both states are likely to be in good condition (Figure 28). 
However, predictions of poor conditions were clustered in urban areas near Los Angeles, 
Phoenix, and San Diego, as well as in the southern San Joaquin valley of California. L3 
assessments showed that good conditions were likely in more than 95% of intermittent and 
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ephemeral streams in Arizona, and over 93% of ephemeral streams in California (Table 17). 
However, the extent of good conditions for intermittent streams in California was more limited, 
likely in just more than half of such streams; moreover, poor conditions were likely in over 14% 
of intermittent streams in California. 

 

Figure 28. Quantile regressions of L2 and L3 scores (specifically, episodic CRAM scores, and MMI 
scores, respectively) against percent development in the watershed. The solid black line 
represents the quantile regression of the median score. The horizontal dashed lines represent the 
index score thresholds based on the 10th and 1st percentile of reference site scores (blue and red, 
respectively). The solid vertical lines represent the levels of development where good (blue) or 
intermediate (red) conditions are as likely as worse conditions. 

 

Table 15. Summary of quantile regressions of index scores against percent development in the 
watershed. 

Index Value Value Standard error t-value p-value 
L2 Intercept 81.0 2.792 29.0 0 

 % development -0.515 0.286 -1.8 0.078 
L3 Intercept 4.70 0.172 27.4 0 

 % development -0.030 0.009 -3.2 0.002 
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Table 16. Maximum levels of % development in the watershed used to predict likely condition 
class for L2 and L3 assessments. 

Index Good conditions Intermediate conditions 
L2 < 17.8 < 55.3 
L3 < 29.6 < 47.8 

 

Table 17. Extent of non-perennial streams predicted to be in good, intermediate, or poor condition 
in California and Arizona, based on the episodic CRAM module (for L2 assessments) or terrestrial 
phase indicators (for L3 assessments). 

   Percent of stream-length in: 
      Good condition Intermediate condition Poor condition 
L2 assessments     
  California Episodic 84.8% 11.3% 3.9% 

 Arizona  75.5% 23.4% 1.1% 
L3 assessments     
  California Ephemeral  93.4% 4.6% 2.1% 

  Intermittent 53.8% 32.2% 14.1% 

 Arizona Ephemeral  97.6% 2.0% 0.4% 
    Intermittent 99.6% 0.4% 0.03% 
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Figure 29. Estimated stress levels on California episodic catchments based on the total percent of 
watershed NLCD covers: urban (high, medium, low, open) and agriculture (crop, hay). Good 
condition: < 3.6% development in the watershed. Intermediate condition: 3.6 to 17.4% 
development in the watershed. Poor condition: > 17.4% development in the watershed. 
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Figure 30. Estimated stress levels on Arizona episodic catchments based on the total percent of 
watershed covered by urban (high, medium, low, open) and agriculture (crop, hay) land uses. 
Good condition: < 1.2% development in the watershed. Intermediate condition: 1.2 to 53.5% 
development in the watershed. Poor condition: > 53.5% development in the watershed. 
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Figure 31. Estimated stress levels on California intermittent and ephemeral streams based on the 
total percent of watershed covered by urban (high, medium, low, open) and agriculture (crop, hay) 
land uses. Conditions are predicted based on terrestrial indicators, but presented for both 
intermittent streams (where both terrestrial and aquatic indicators are needed) and ephemeral 
streams (where only terrestrial indicators are needed. Good condition: < 22.9% development in 
the watershed. Intermediate condition: 22.9 to 59.0% development in the watershed. Poor 
condition: > 59.0% development in the watershed.  
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Figure 32. Estimated stress levels on Arizona intermittent and ephemeral streams based on the 
total percent of watershed covered by urban (high, medium, low, open) and agriculture (crop, hay) 
land uses. Conditions are predicted based on terrestrial indicators, but presented for both 
intermittent streams (where both terrestrial and aquatic indicators are needed) and ephemeral 
streams (where only terrestrial indicators are needed. Good condition: < 25.6% development in 
the watershed. Intermediate condition: 25.6 to 75.6% development in the watershed. Poor 
condition: > 75.6% development in the watershed. 

  



64 

Discussion 

Conditions of nonperennial streams in California and Arizona 

Our L1 assessments show that ephemeral and intermittent streams are widespread in the 
Southwest, and largely in good biological condition, although large extents of degraded 
intermittent streams are evident in parts of California, where agricultural and urban development 
are more extensive. The maps created as part of this project allow managers to prioritize 
protection or restoration efforts in their jurisdictions, depending on the prevalence of streams 
likely to be in good or poor condition. Moreover, they can use the maps to more effectively plan 
their monitoring programs by knowing which L2 or L3 assessment tools are appropriate.  

It may be possible to improve the accuracy of models (both those that predict habitat, and those 
that predict likely ecological condition). These models made extensive use of the StreamCat data 
set (Hill et al. 2019), which generally emphasizes large-scale watershed characteristics, rather 
than local features. Although watershed characteristics are demonstrated to correlate with reach-
scale conditions in dry streambeds, the relationships appear to be less strong than for intermittent 
or perennial streams (Mazor et al. 2014; Mazor et al. 2019a). Inclusion of more local factors as 
predictors may improve model performance. 

The benefits of modeling sampleability rather than hydrology to predict habitat 

Predicting the locations of intermittent or ephemeral streams has often relied on hydrologic 
models (e.g., Sengupta et al. 2018). But predicting hydrologic regimes is challenging, 
particularly in arid regions with highly variable precipitation patterns and complex geology, and 
even more so when predicting low-flow conditions (Miller et al. 2018; Sengupta et al. 2018). But 
perhaps the biggest shortcoming of these efforts to model hydrologic regimes, from the 
perspective of natural resource management and environmental monitoring, is that predictions of 
discharge or hydrologic metrics is generally insufficient to predict how flow interacts with 
geomorphology to create the habitats needed to support ecological communities. A hydrologic 
model may predict discharge or characteristics of a flow regime for a given site, but that is not 
enough to know if a reach can support certain taxa or if a field crew will be able to collect 
samples at a site. By directly modeling the outcome relevant to monitoring programs (i.e., 
sampleability), our maps offer a useful guide for practitioners to plan their sampling efforts. 
Recent approaches using functional flows make efforts to bridge the gap between strict 
hydrology and ecologically relevant outcomes (Yarnell et al. 2015), and may also provide useful 
guidance for monitoring programs. 

Using the L1 predictions to select L2 and L3 assessment tools 

Geodatabases containing the shapefiles used to produce Figure 24 to Figure 27 can be 
downloaded by links in the Supplemental Material (specifically, the shapefiles named “L2 
predicted habitat” and “L3 predicted habitat”). The L2 file for California provides greater spatial 
resolution than the current CRAM Episodic Module field book provides (which is based on more 
coarse scale climate patterns than the models used here). Consulting the predictions in the 
geodatabases will allow practitioners to anticipate which tool they will likely need. The specific 
field conditions observed at a site supersede these predictions, as described in the CRAM field 
book (CWMW 2013). 
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Supplemental Material 

Geodatabases containing shapefiles for the two states may be downloaded below: 

California: 

ftp://ftp.sccwrp.org/pub/download/PROJECTS/EPA_EphemeralStreams/CAgdb.zip 

Arizona: 

ftp://ftp.sccwrp.org/pub/download/PROJECTS/EPA_EphemeralStreams/AZgdb.zip 

Each geodatabase contains the following shapefiles: 

• L2 predicted habitat. A shapefile of catchment polygons with the following columns: 

o COMID: Unique identifier of the catchment. May be used to link data with the 
NHD Plus or StreamCat data (Hill et al. 2016). 

o Habitat: Habitat classification of the catchment as Episodic or Riverine 

• L2 predicted condition. A shapefile of episodic catchment polygons with the following 
columns: 

o COMID: Unique identifier of the catchment. May be used to link data with the 
NHD Plus or StreamCat data (Hill et al. 2016). 

o PctDeveloped: Sum of urban, agricultural and developed open space in the 
watershed. Derived from StreamCat (Hill et al. 2016). 

o Condition: Predicted condition, based on PctDeveloped: 

 Good: PctDeveloped is less than 17.8% 

 Intermediate: PctDeveloped is between 17.8 and 55.3% 

 Poor: PctDeveloped is greater than 55.3% 

• L3 predicted habitat. A shapefile of catchment polygons with the following columns: 

o COMID: Unique identifier of the catchment. May be used to link data with the 
NHD Plus or StreamCat data (Hill et al. 2016). 

o Habitat: Habitat classification of the catchment as perennial (i.e., where aquatic 
indicators are needed), intermittent (i.e., where aquatic and terrestrial indicators 
are needed), or ephemeral (i.e., where terrestrial indicators are needed). 

• L3 predicted condition. A shapefile of intermittent or ephemeral catchment polygons with 
the following columns: 

o COMID: Unique identifier of the catchment. May be used to link data with the 
NHD Plus or StreamCat data (Hill et al. 2016). 

ftp://ftp.sccwrp.org/pub/download/PROJECTS/EPA_EphemeralStreams/CAgdb.zip
ftp://ftp.sccwrp.org/pub/download/PROJECTS/EPA_EphemeralStreams/AZgdb.zip


66 

o PctDeveloped: Sum of urban, agricultural and developed open space in the 
watershed. Derived from StreamCat (Hill et al. 2016). 

o Condition: Predicted condition, based on PctDeveloped: 

 Good: PctDeveloped is less than 29.6% 

 Intermediate: PctDeveloped is between 29.6 and 47.8% 

 Poor: PctDeveloped is greater than 47.8% 
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