

Biotic Elements in Wetland Ecosystems

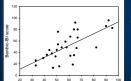
- Tangible structure (e.g., plant and animal tissues)
- Ecological structure (e.g., populations of producers, consumers, and decomposers) Ecological processes
- CRAM:
 - Condenses these biological and ecological elements to representative vegetation characteristics
 - Represents established ecological patterns in a simplified manner
 - Maintains link to ecological patterns

The Biotic Structure Attribute Measures Complexity

- Ecologically complex wetlands have more species and more individuals
- In CRAM, wetlands with complex structures score higher
- Biotic Structure metrics that emphasize complexity:
- Greater plant species richness
- Greater horizontal "zone" complexity
- Greater vegetation layering
- Direct measurements of biological diversity are Level 3 studies and are not addressed by CRAM

Biotic Aspects in the Buffer and Landscape Context Attribute		
Function	CRAM Metric	
Riparian connectivity for wildlife and fisheries movement and conservation	Stream Corridor Continuity	
Buffer functions are important for wildlife and habitat protection	Buffer	
C13. Cennectivity of a stream corridar With and length of a vegetade stream corri- der interact or conhise to determine stream processes. However, a continuous stream corrida, victoria may apply is essential to maintain squaire conditions such as cool water temperature and high avegens content. Without hose, plas one physiological conditions, viaile populations of certain fish species, cha as troat, will not be maintained.	All and a second	

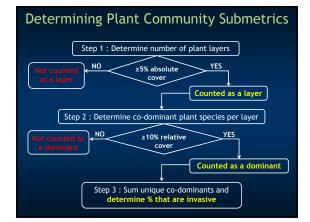
Biotic Aspects in Hydrology and Physical Structure Attributes

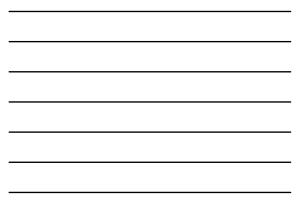

Function	CRAM Attribute
 Instream conditions:	Hydrology Attribute considers
important for fish and	aggradation, degradation, and
amphibians	fluvial process indicators
 Hydromodification:	Hydrology Attribute considers
correlated with invasions by	channel stability and
exotic species	connectivity to floodplain
 Microhabitat elements:	Physical Structure Attribute
important for many	tallies soil cracks, snags,
invertebrates and some	undercut banks, other
vertebrates	microhabitats, etc.

Biotic Structure Attribute Reflects Ecological Patterns

CRAM/IBI Correlations

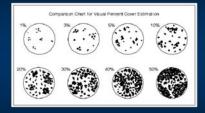
- CRAM Index (P<0.0001, R² = 0.471)
 CRAM Biotic (P<0.0001, R² = 0.434)
- CRAM Biotic Structure/Species Richness of Riparian Associated Birds
- CRAM Biotic (P = 0.037, Spearman's ρ = 0.328)
- CRAM Biotic Structure/Species Richness of All Birds
 - CRAM Biotic (P = 0.029, Spearman's ρ = 0.342)




CRAM index sc

Metric 1: Plant Community

- Diversity of vegetation in the AA:
 - *Plant layer diversity*: More vegetation layers = increased richness and higher productivity
 - Number of dominant plant species: Diverse communities are more biologically productive and provide more habitat niches
 - Percentage of the dominant species that are invasive: Dominance by invasive species reduces ecological functions


Measuring Species Richness

- Why the 10% threshold for plant dominance?
- More species = better condition
- The 10% threshold for dominance identifies a count of the number of species
- Sub-metric can then be scored numerically

10 TWA INCOMES IN

Estimating Percent Cover: Key CRAM Skill Percent coverage can be difficult to estimate

You can "calibrate your eye" using a graphic
A layer must cover 5% of the area that is suitable for the layer (i.e. absolute coverage)

Estimating Relative Percent Cover

 A plant species must cover 10% of the area covered by a layer to be included as a codominant species (i.e. Relative cover)

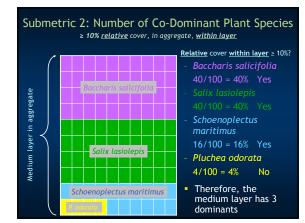
Absolute vs. Relative Percent Cover

Absolute vs. Relative Percent Cover of THE COLORED PORTION of the rectangle, 50% is green. Therefore the <u>relative</u> percent cover of green within the colored portion is 50% (the rest is dark blue). However, the <u>absolute</u> cover of green within the original rectangle is only 25%.

Defining Plant Layers

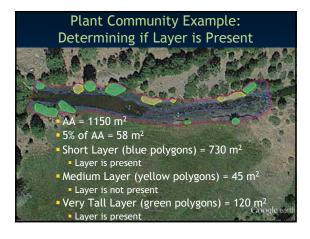
 Each CRAM field book has height thresholds to define plant layers for the wetland type

• Layer heights are based on typical vegetation communities for the wetland type


	Plant Layers Aquatic Semi-aquatic and Riparian				
Wetland Type	Floating	Short	Medium	Tall	Very Tall
Non-confined Riverine	On Water Surface	<0.5 m	0.5 – 1.5 m	1.5 – 3.0 m	> 3.0 m
Confined Riverine	NA	<0.5 m	0.5 – 1.5 m	1.5 – 3.0 m	> 3.0 m

Considerations for Defining Plant Layers and Co-Dominant Species

- A layer is present if it covers at least 5% of the area that is suitable for that layer
- Floating layer doesn't occur in terrestrial portions of AA,
- other layers don't occur in open water portions of AA, etc. • A species can exist in >1 layer, but an individual can exist
- In one layer
 Each plant is counted in the tallest layer it occupies
 Species can be in multiple layers, but each species is only counted
- Species can be in multiple layers, but each species is only counted once
 Vines are counted in the tallest layer of vegetation the vine reaches
- Vines are counted in the tallest layer of vegetation the vine reache
 Dead vegetation contributes to the absolute cover
- requirement for defining a layer, but dead species are not counted as co-dominants



Use a Quantitative Approach to Metric Scoring

- Plant layer presence can be estimated using area
 - Example: AA is 3000 m², minimum area for layer to be present is 5%
 - 3000 X 0.05 = 150 m²
- Dominant species \geq 10% coverage in a layer
 - Example: A Layer covers 2/3 of the AA and the minimum area for species to be dominant is 10% of the layer
 - 2/3 X 3000 = 2000 m²
 - 2000 X 0.10 = 200 m²

Plant Community Special Notes

Invasive status is determined by listing on the Cal-IPC Invasive Plant Inventory (any level)
 Local invasive species can be defined by regional experts

Ratings for the Plant Community Metric

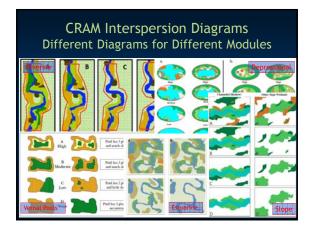
Rating	Number of Plant	Number of Co-dominant	Percent Invasion
Kating	Layers Present	Species	Fercent Invasion
	Non-confined Riverine Wetlands		
A	4 - 5	≥ 12	0-15%
В	3	9 - 11	16 - 30%
С	2	6 - 8	31 - 45%
D	0-1	0 - 5	46 - 100%
Confined Riverine Wetlands			
A	4	≥ 11	0-15%
В	3	8 - 10	16 - 30%
С	2	5 - 7	31 - 45%
D	0-1	0-4	46 - 100%

Scoring tables exist for each module

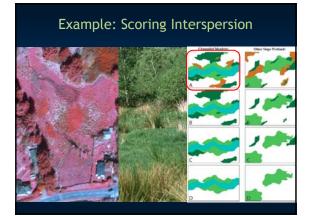
Thresholds are based on typical plant communities for each wetland type

Metric 2: Horizontal Interspersion

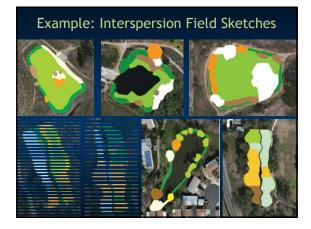
- Horizontal distribution of different habitat conditions
- Different vegetation associations represent different habitat types
- Greater horizontal zonation provides increased habitat values for wildlife
- Higher scores for more zones, greater interspersion of zones, and consistent distribution of zones
- An "A" condition means BOTH more plant zones AND a greater degree of interspersion among zones, and the departure from the "A" condition is proportional to BOTH the reduction in the numbers of zones AND their interspersion

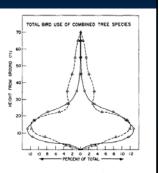

Scoring Horizontal Interspersion

- Wetlands with short vegetation:
 - Plant zones viewed as a two-dimensional plan view of vegetation types
- Wetlands with taller vegetation and layering:
 - Each zone can be a combination of overlapping species in multiple layers
- Combination of aerial image interpretation and field observations


Scoring Criteria for the Horizontal Interspersion Submetric

Rating	Alternative States
А	AA has a high degree of plan-view interspersion.
В	AA has a moderate degree of plan-view interspersion.
С	AA has a low degree of plan-view interspersion.
D	AA has minimal plan-view interspersion.


Scoring is based on a worksheet field sketch and interpretation of a graphic figure from the appropriate field book


Metric 3: Vertical Biotic Structure

- Vertical diversity of habitat
- Same vegetation layers as the Plant Community metric
- Wetlands that lack vertical structure and vegetation layers (e.g., vernal pools) do not include either this metric or the "layers" submetric
- Compare the observed conditions with alternative conditions illustrated in the field book

Ecological Functions of Vertical Structure

- Ecological relationship between wildlife use and vertical layering
- Particularly for riparian
- areas Vertical structure = habitat for foraging,
- nesting, etc Bird use parallels vegetation structure

Solid line: percent of foliage volume in each height class. Dashed line: summed bird use. Data form R.P. Balds, study in SE Arizona The Conder 21 99 443

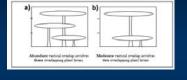
Functions of Vertical Structure

• Overlapping vegetation layers provide:

- vertical gradients in light and temperature
- greater species diversity and richness of invertebrates, fish, amphibians, mammals, and birds
- rainfall interception, reduced evaporation from soils, and enhanced filtration of floodwaters

Entrained Vegetation Functions

- Ground nesting birds require vegetation cover at nest sites
- Plant canopies entrap coarse plant litter that is lifted into the canopies by rising water (tides or floods)
- This "entrained" material is left hanging in the plant cover, providing shelter for birds and small mammals

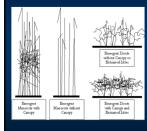


Dense Canopy Functions

- Rainfall interception
- Reduced evaporation from soils
- Enhanced filtration of flood waters

Vertical Biotic Structure in Wetlands with Woody Riparian Vegetation

- For wetland types with well-developed vertical woody vegetation structure
- 3-D concept: vertical layering measured over a proportion of the AA in horizontal plan view
- Higher scores = higher vertical density of layers and higher cover of these layers over the AA


Vertical Biotic Structure Scoring Using Overlap

Rating	Alternative States
А	More than 50% of the vegetated area of the AA supports $\ensuremath{abundant}$ overlap of 3 plant layers.
В	More than 50% of the vegetated area of the AA supports at least moderate overlap of 2 plant layers.
с	25%-50% of the vegetated area of the AA supports at least moderate overlap of 2 plant layers.
D	Less than 25% of the vegetated area of the AA supports moderate overlap of 2 plant layers OR AA is sparsely vegetated overall.

Vertical Biotic Structure in Emergent Wetlands with Herbaceous Vegetation

Values and functions of entrained litter in


- herbaceous wetlands
- Estuarine and depressional
- wetlands
- Proportion of AA with entrained litter

Vertical Biotic Structure Scoring Using Entrainment

Rating	Alternative States
A	Most of the vegetated plain of the AA has a dense canopy of living vegetation or entrained litter or detritus forming a "ceiling" of cover above the wetland surface that shades the surface and can provide abundant cover for wildlife.
В	Less than half (25-50%) of the vegetated plain of the AA has a dense canopy of vegetation or entrained litter or detritus as described in "A" above; OR Most of the vegetated plain has a sparse canopy of vegetation or entrained litter or detritus.
с	25-50% of the vegetated plain of the AA has a sparse canopy of vegetation or entrained litter or detritus.

- Most of the AA (>75%) lacks a canopy of living vegetation or entrained litter or detritus. D

Vertical Biotic Structure in Emergent Wetlands with Woody Riparian Elements

- Many wetlands have both marshy emergent layers and woody "riparian" vegetationHigher scores = higher vertical density of layers
- and higher cover of these layers over the AA