California Danid Assassment Mathad	
California Rapid Assessment Method for Wetlands	
Establishing the Assessment Area	
	1
Background	
 The Assessment Area (AA) is the portion of the wetland that is assessed using 	
CRAM. • An AA might include a small wetland in its	
entirety. In most cases the AA will likely be a smaller portion of the wetland.	
Background	
 Establishing a proper AA is a critical step in 	
correctly performing a rapid assessment using CRAM.	

 The use of an incorrect AA can yield results that are not reproducible, and that are not likely to relate to stressors or management

Rules are therefore needed to define the

actions.

AA.

Rule 1

- It is assumed that different wetlands, even neighboring wetlands of the same type, can be managed differently, or for different purposes, and can be subject to different stressors.
- Therefore, each AA must not encompass or involve more than one wetland, even of the same type (do not group wetlands together).

Rule 2

- Since CRAM metrics vary between wetland types, each AA must only represent one type of wetland.
- Different types of wetlands can be contiguous with each other, or even nested one within the other, but each AA must only represent one wetland type.

Rule 3

- The AA must be classified using CRAM typology.
 - Misclassification of wetlands can lead to using the wrong CRAM module, which in turn will lead to spurious assessments.
- The wetland must be assessed using the metrics designed for its wetland type.

-	

Rule 4

- Experience has shown that for the purpose of standardizing the AAs for any wetland type, the overriding considerations are:
 - Hydro-geomorphic integrity
 - Size

Hydro-geomorphic Integrity

- Need to be able to distinguish between the effects of management actions and the natural variability within and among wetlands.
- AA should maximize the CRAM signal-to-noise ratio.
- Each AA must therefore encompass most, if not all, of the natural spatial variability in the visible form and structure of its encompassing wetland.
- AA should also encompass most of the internal workings of the wetland that account for its homeostasis.

Hydro-geomorphic Integrity

- For an AA to have this desired level of integrity, it should be bounded by obvious physical changes in topography, hydrology, or infrastructure that significantly control the:
 - Sources
 - Volumes
 - Rates
 - General composition
 - ... of sediment supplies or water supplies within the AA at the time of the field assessment.

Hydro-geomorphic Integrity

 In summary: The boundaries of an AA should not extend beyond <u>any</u> features that represent or cause a major spatial change in water source or sediment source.

AA Size

- Larger AAs typically yield higher CRAM scores.
 - CRAM is especially sensitive to wetland structural complexity, and larger AAs can afford more opportunity to encounter variability in structure.
- For any given wetland type, having AAs of very different sizes can introduce variability into CRAM scores.

AA Size

- Preferred AA size is generally larger for types of wetlands that tend to have broad, level plains than for wetlands fringing steep terrain.
- To the degree possible, the establishment of an AA should first be based on hydro-geomorphic considerations.
- If this is not applicable, then use the recommended AA size (not to exceed the maximum AA size). Practitioner may use BPJ.

-	

Hydro-geomorphic Considerations for Identification of the AA Examples of features that *should* be used to delineate AA boundaries: Flow-Through Wetlands Non Flow-Though Wetlands Lacustrine, Wet Meadows,

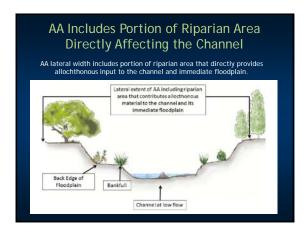
Riverine, Estuarine and Slope Wetlands	Lacustrine, Wet Meadows, Depressional, and Playa Wetlands	Vernal Pools and Vernal Pool Systems
 diversion ditches end-of-pipe large discharges grade control or water height control streament major changes in riverine major changes in riverine depardation, aggradation, depardation, aggradation, depardation, depardation of theme major channel confluences vater falls open water areas more than open water areas more than transitions between wedand types forshores, bateshores and 	above-grade roads and fills berms and leves: jetties and wave deflectors midpe point sources or outflows of water open water areas more than 30 m wide on average or broader that we well and the well-and water of	above-grade roads and fills major point sources of water inflows or outflows weirs, berms, levees and other flow control structures

Hydro-geomorphic Considerations for Identification of the AA

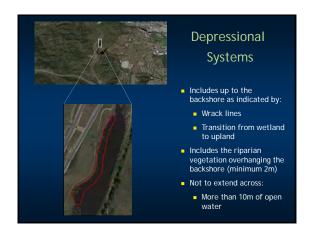
Examples of features that should *not* be used to establish any AAs:

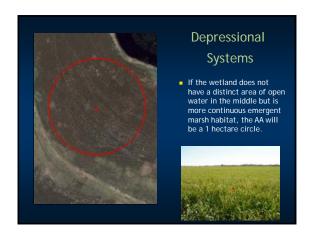
- at-grade, unpaved, single-lane, infrequently used roadways or crossings
- bike paths and jogging trails at grade
- bare ground within what would otherwise be the AA boundary
- fences (unless designed to obstruct the movement of wildlife)
- property boundaries
- riffle (or rapid) glide pool transitions in a riverine wetland
- spatial changes in land cover or land use along the wetland border state and federal jurisdictional boundaries

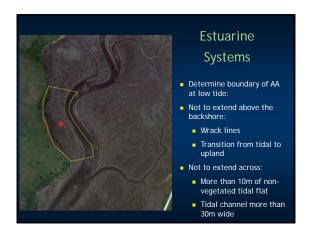
AA Size Guidelines		
Wetland Type	Recommended AA Size	
Slope		
Spring or Seep	Preferred size is 0.50 ha (about 75m x 75m, but shape can vary); there is no minimum size (least examples can be mapped as dots).	
Wet Meadow	Preferred size is 1.0 ha (about 140m x 140m, but shape can vary); Maximum size is 2.0 ha; there is no minimum size.	
Depressional		
Vernal Pool	There are no size limits.	
Vernal Pool System	Preferred size is <00 hz (about 500m x 300m; shape can vary); there is no minimum size so long as there are between 3 and 6 pools. If the system has between 3 and 6 pools, assess all of them. If there are more than 6 pools, select 6 that represent the range in size of pools present on the size.	
Other Depressional	Preferred size is 1.0 ha (a 56 m radius circle or about 100m x 100m, but shape can vary); Massimum size is 2.0 ha (an 80 m radius circle or about 140m x 140m, but shape can vary); There is no minimum size.	
Riverine		
Confined and Non-confined	Recommended length is 10s average bankfull channel width; maximum length is 200 m; minimum length is 100 m. An should extend laterally (landward) from the bankfull contour to encompass all the vegetation (trees, shrubs vines, etc.) that probably provide woody debins, leaves, insects, etc. to the channel and its immediate Boodplain; minimum width is 2 m.	
Lacustrine	Preferred size is 2.0 ha (about 140m x 140m, but shape can vary); Minimum size is 0.5 ha (about 75m x 75m).	
Playa	Preferred size is 2.0 ha (about 140m x 140m, but shape can vary); Minimum size is 0.5 ha (about 75m x 75m).	
Estuarine		
Perennial Saline	Preferred size and shape for estuarine wetlands is a 1.0 ha circle (radius about 55m), but the shape can be non-circular if necessary to fit the wetland and to meet hydro-geomorphic and	
Perennial Non-saline	other criteria. The minimum size is 0.1 ha (about 30m x 30m).	
	Maximum sixe is 2.25 be (about 150 on v. 150 on but change on your). The minimum sixe is 0.1	


AA Identification The location of the AA can be identified by the boundaries of a project, a Jurisdictional Delineation, or a wetland polygon in a Level 1 inventory. Restoration Project Level 1 polygon

Summary of Considerations for Identification of the AA


- Purpose of Assessment
 - Project (multiple AAs to cover site)
 - Ambient (AA located at probabilistic draw point)
- Hydrogeomorphic Integrity
 - Bounded by changes in flow and sediment regimes
 - Maximize detection of management effects
- Size Limits for AAs
 - Larger AAs have higher or more variable scores
 - Larger AAs take longer to assess





Depressional Systems Backshore of wetland and dripline of riparian vegetation

Step 1: Identify Assessment Areas

- In the office, using aerial imagery
 - Identify pools probably interconnected by surface or subsurface hydrology
 - Vernal pool systems usually include 6 pools, with a minimum of 3 pools
 - AAs should not exceed ~10 hectares (300 x 300 m)
 - Extend AA boundary to surface drainage divide
 - But not exceeding 30 meters beyond pool boundary
- Ground-truth the AA boundary

Exan	nple of Determining AAs

1	1