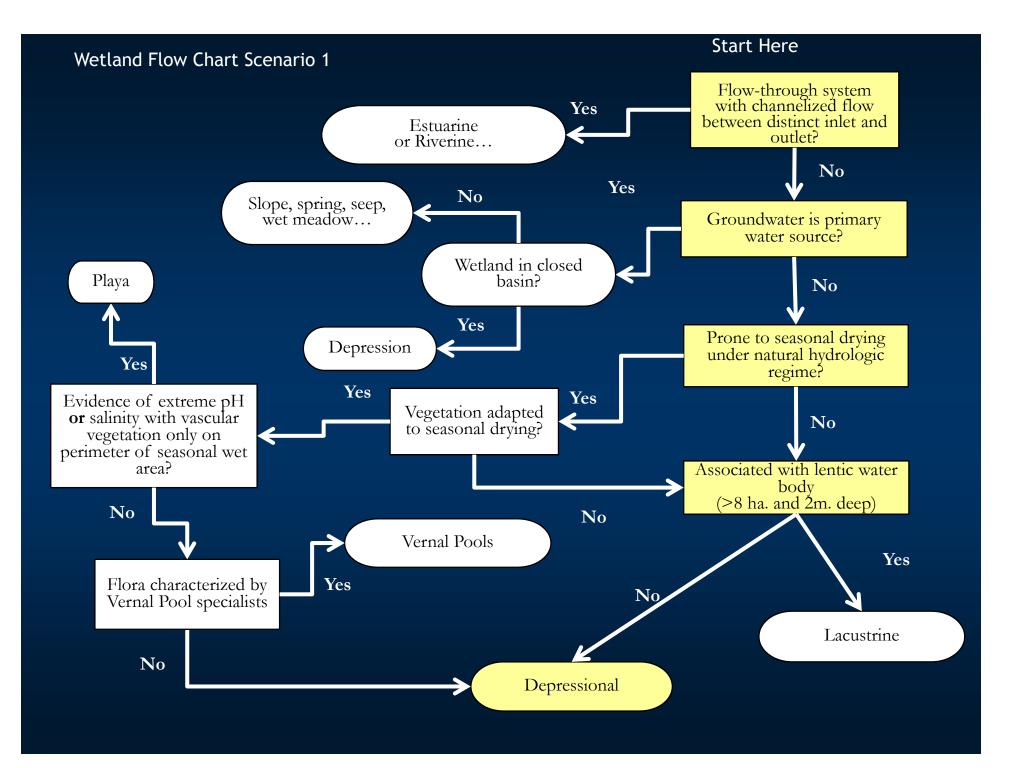
California Rapid Assessment Method for Wetlands (CRAM) Depressional Training Module

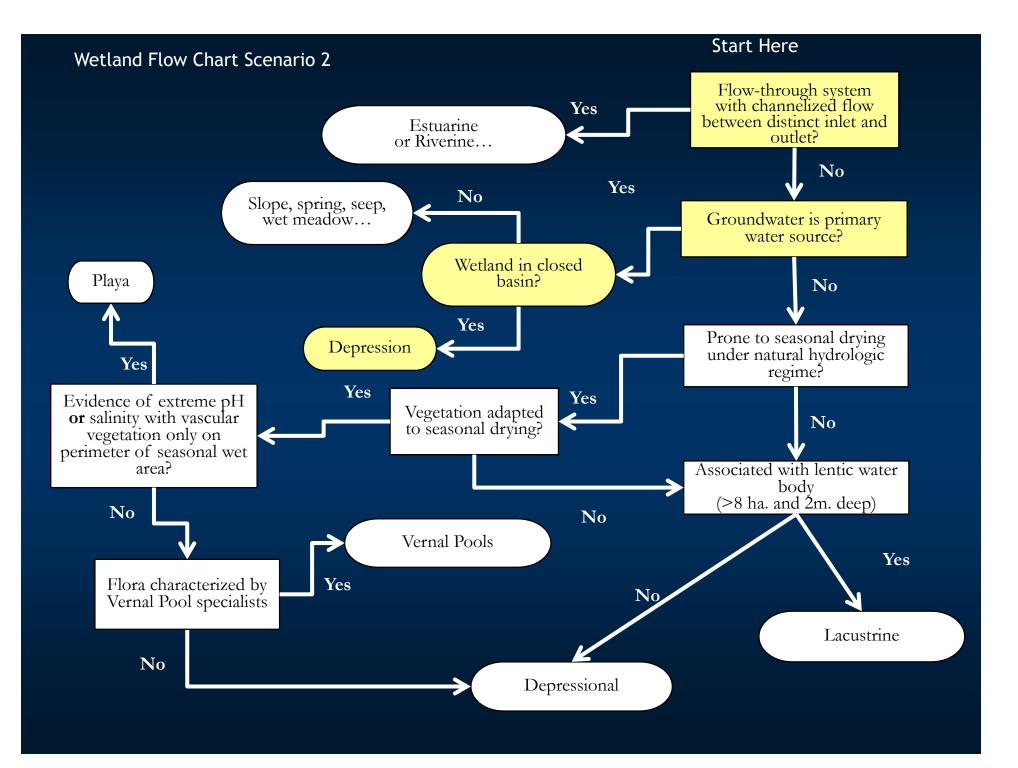
Steps of CRAM Assessment

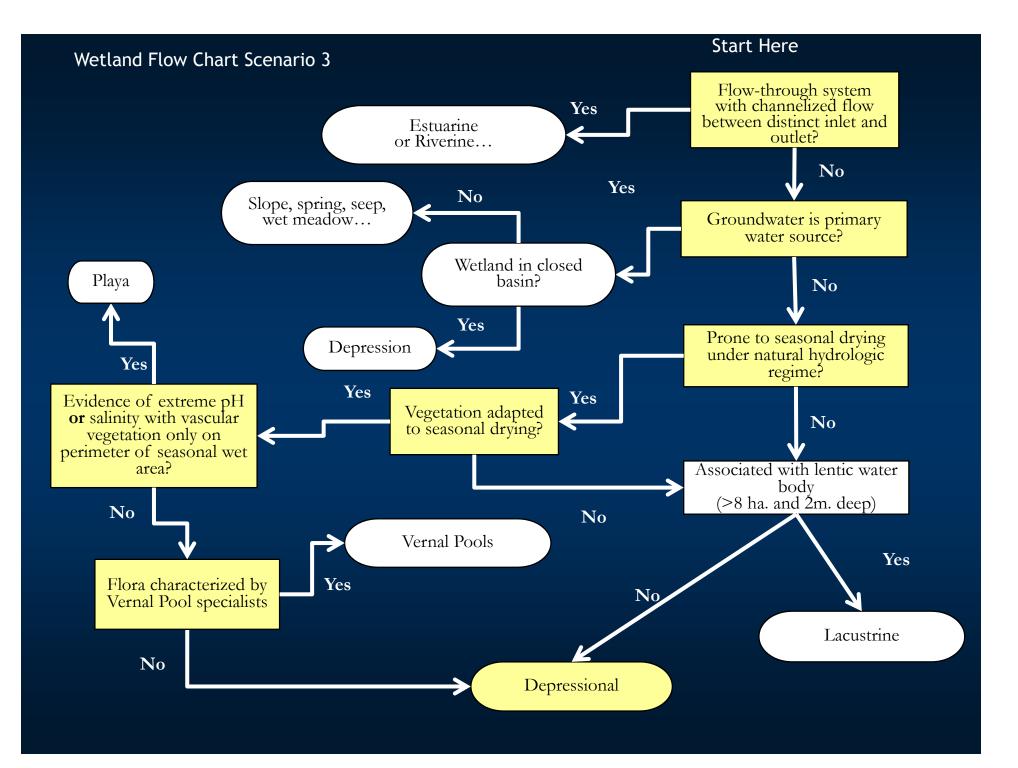
- Step 1: Assemble background information
- Step 2: Classify wetland
- Step 3: Verify the appropriate season
- Step 4: Sketch the CRAM Assessment Area (AA)
- Step 5: Conduct the office assessment of AA
- Step 6: Conduct the field assessment of AA
- Step 7: Complete CRAM QA/QC
- Step 8: Submit assessment results using *e*CRAM

Assemble Background Information

- I-3m pixel resolution digital geo-rectified site imagery with a scale
- Preliminary map of assessment area (AA)
- Reports on hydrology, ecology, chemistry
- List of common plants
- Access permission (if needed)
- Map/directions to site


Sources of Background Information


- Wetland maps (EcoAtlas, NWI)
- Other maps (topography, geology, soils, vegetation)
- Project reports (e.g. monitoring reports)
- Phone interviews



Depressional Wetlands

- Seasonal or perennial hydrology
- Exist in topographic lows
- Precipitation, groundwater, and runoff are main water sources
- Various types: sag ponds, snowmelt ponds, perennial ponds, cut-off oxbows, floodplain depressions, stock ponds, duck ponds, etc.

CRAM Assessment Window

Growing season of plants
 Usually March - September
 New growth to senescence
 Shorter at higher altitudes
 Later with snow

Considerations for defining the AA

Purpose of Assessment

- Project (multiple AAs to cover site)
- Ambient (AA located at probabilistic draw point)
- Hydrogeomorphic Integrity
 - Bounded by changes in flow and sediment regimes
 - Maximize detection of management effects
- Size Limits for AAs
 - Larger AAs have higher or more variable scores
 - Larger AAs take longer to assess

Sketch the AA

- Subject to field verification
- 1 ha recommended size
- No minimum size, maximum size = 2.0 ha

Identifying AA boundaries

- Extend from the foreshore to the backshore (high water) plus overhanging riparian or 2m
- If open water is present, extend AA 10m beyond the foreshore
- Should NOT cross: levees, open water >30m wide, uplands, weirs
- CAN cross: roads/trails at grade, bare ground, property boundaries, jurisdictional boundaries

Office Assessment

The scoring of some metrics benefit from checking additional background information or aerial photographic investigation completed in the office

Buffer and Landscape Context Attribute

- Aquatic Area Abundance
- Percent of AA with Buffer
- Average Buffer Width

Hydrology Attribute
 Water Source

Field Assessment Procedure

- 1. Bring printed aerial photographs
- 2. Walk the wetland and draw the AA
- 3. Walk through entire AA making mental notes and recording important plant species
- 4. Fill out datasheets
- 5. Walk again to clarify uncertainties
- 6. Finalize field scores

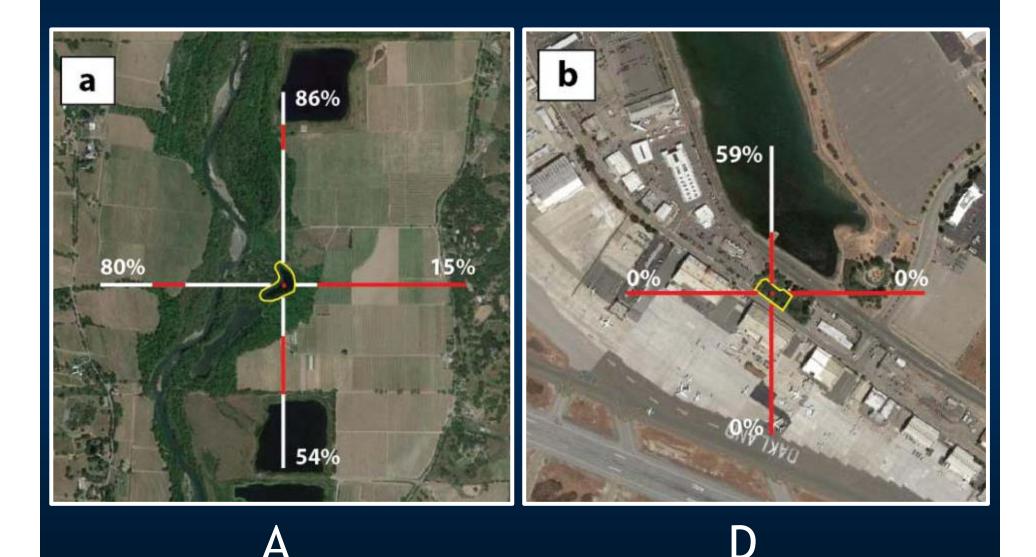
Basic Information Datasheet

Basic Information Sheet: Depressional Wetlands

Assessment Area Nar			
Project Name:			
Assessment Area ID	# -		
Project ID #:	· .	Date:	
Hoject ID #.		D'Ale.	
Assessment Team Me	embers for This AA		
AA Location:			
Latitude:	Longitude:		Datum:
AA Category:			
Pre-Restoration	Dest-Restoration	Pre-Mitigation	Post-Mitigation
D Pre-Impact	🗆 Post-Impact	o Training	a Ambient
a Reference	o Other:		
Origin of Wetland (i	if known):		
 Natural system 	 Artificial system 		
Type of Managemen	nt (if known):		
□ waterfowl/birds □ amphibians □ general wildlife □ sediment □ water quality □ stormwater			
 water supply (agriculture) 	ulture) 🗆 water supply (li	vestock) 🗆 not manag	ed 🗆 other:
Which best describes the type of depressional wetland?			
freshwater marsh alkaline marsh brackish marsh			
other (specify):			
AA Encompasses:			
entire wetland			
Which best describes the hydrologic state of the wetland at the time of assessment?			
ponded/inundated saturated soil, but no surface water dry			

Buffer and Landscape Context Attribute

Spatial connection to other aquatic resources


The size and quality of buffer surrounding the AA

Aquatic Area Abundance

Percent of transect lines (500m) that contains an aquatic feature of any kind

Segment Direction	Percent of transect length that crosses an aquatic feature
North	
South	
East	
West	
Avg % of transect	

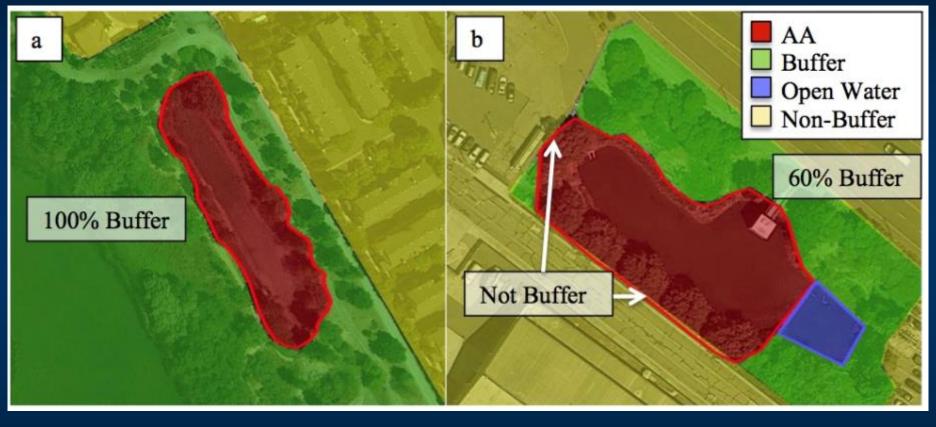
Aquatic Area Abundance

Rating for Aquatic Area Abundance

Rating	Alternative States
Α	An average of 46-100 % of the transects is an aquatic feature of any kind
В	An average of 30-45 % of the transects is an aquatic feature of any kind
С	An average of 16-30 % of the transects is an aquatic feature of any kind
D	An average of 0-15 % of the transects is an aquatic feature of any kind

Buffer Metric

Buffers:

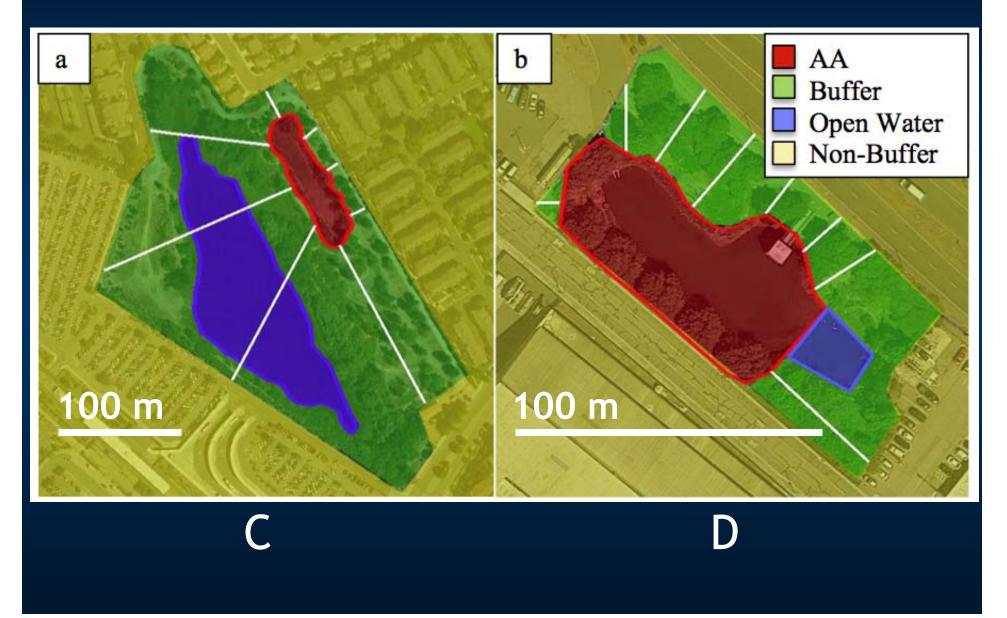

 Natural or semi-natural area adjoining the AA
 Must be 5m wide and extend at least 5m along AA perimeter

 "Adjoining" areas of open water > 30m are neutral (non-adjoining open water is buffer)

Guidelines for identifying wetland buffers and breaks in buffers

 at-grade bike and foot trails, or trails (with light traffic) horse trails natural upland habitats nature or wildland parks range land and pastures raikroads (with infrequent use: 2 trains per day or less) roads not hazardous to wildlife, such as seldom used rural roads, forestry roads or private roads swales and ditches vegetated levees commercial developments commercial developments fences that interfere with the movements of wildlife (i.e. food safety fences that prevent the movement of deer, rabbits and frogs) intensive agriculture (row crops, orchards and vineyards) golf courses paved roads (two lanes or larger) active raikroads (more than 2 trains per day) lawns parking lots horse paddocks, feedlots, turkey ranches, etc. residential areas sound walls sports fields urbanized parks with active recreation pedestrian/bike trails (with heavy traffic)
Declesition / Dike trails (with neavy traffic)

% of AA with Buffer


B

A

% of AA with Buffer

Rating	Alternative States
А	Buffer is > 75% of AA perimeter
В	Buffer is 50-74% of AA perimeter
С	Buffer is 25-49% of AA perimeter
D	Buffer is <25% of AA perimeter

Average Buffer Width

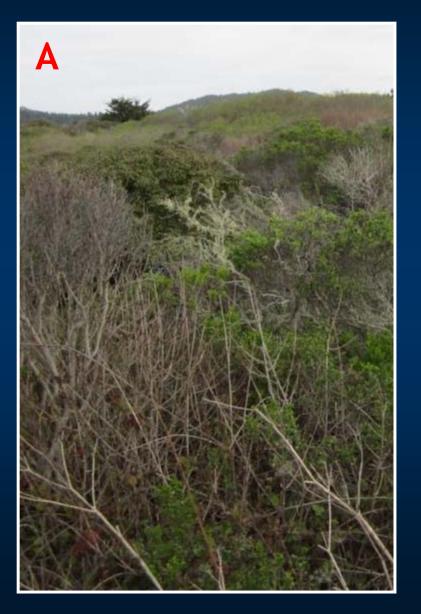
Average Buffer Width

Rating	Alternative States
Α	Average buffer width is 190 – 250 m.
В	Average buffer width 130 – 189 m.
С	Average buffer width is 65 – 129 m.
D	Average buffer width is $0 - 64$ m

Buffer Condition

Buffer characteristics examined:
Native vs non-native vegetation
Soil disturbance or compaction
Intensity of human visitation

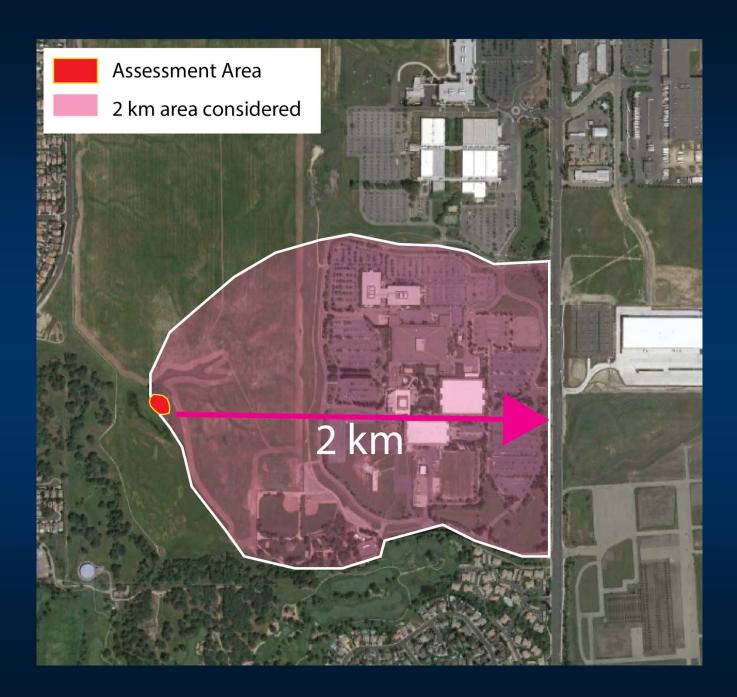
Assess based on field indicators only


Buffer Condition

Rating for Buffer Condition

Rating	Alternative States
А	Buffer for AA is dominated by native vegetation , has undisturbed soils , and is apparently subject to little or no human visitation .
В	Buffer for AA is characterized by an intermediate mix of non-native and native vegetation (25% to 75% non-native), but mostly undisturbed soils, and is apparently subject to little or low impact human visitation OR
В	Buffer for AA is dominated by native vegetation , but shows some soil disturbance , and is apparently subject to little or low impact human visitation .
С	Buffer for AA is characterized by substantial amounts (>75%) of non-native vegetation, AND there is at least a moderate degree of soil disturbance/compaction, and/or there is evidence of at least moderate intensity of human visitation.
D	Buffer for AA is characterized by barren ground and/or highly compacted or otherwise disturbed soils, and/or there is evidence of very intense human visitation.

Buffer Condition


Hydrology Attribute

- Water Source: wetland's primary source of water
- Hydroperiod: duration of inundation
- Hydrologic connectivity: connection to surrounding area

Water Source

- Consider fresh water source(s)
- Determine anthropogenic inputs, diversions, or modified hydrology within the upstream immediate drainage basin (within 2km)
- Consult information sources
 - watershed reports
 - local experts
 - maps or imagery

"...<u>irrigation</u> runoff from <u>landscaped areas</u> make up the base flow in Big Canyon, and given the consistent volume of irrigation water, this runoff can be expected to be a reliable and <u>constant source</u> of water...

Big Canyon Creek Restoration Plan

City of Newport Beach Upper Newport Bay, Orange County, CA April 2004 http://newport-beach.ca.us/CMO/BigCanyonCreekRestorationProject.htm

Rating for Water Source

Rating	Alternative States
A	Freshwater sources that affect the dry season condition of the AA, such as its flow characteristics, hydroperiod, or salinity regime, are precipitation, groundwater, and/or natural runoff, or natural flow from an adjacent freshwater body, or the AA naturally lacks water in the dry season. There is no indication that dry season conditions are substantially controlled by artificial water sources.
в	Freshwater sources that affect the dry season condition of the AA are mostly natural, but also obviously include occasional or small effects of modified hydrology. Indications of such anthropogenic inputs include developed land or irrigated agricultural land that comprises less than 20% of the immediate drainage basin within about 2 km upstream of the AA, or that is characterized by the presence of a few small stormdrains or scattered homes with septic systems. No large point sources or dams control the overall hydrology of the AA.
с	Freshwater sources that affect the dry season conditions of the AA are primarily urban runoff, direct irrigation or flooding, pumped water, artificially impounded water, water remaining after diversions, regulated releases of water through a dam, or other artificial hydrology. Indications of substantial artificial hydrology include developed or irrigated agricultural land that comprises more than 20% of the immediate drainage basin within about 2 km upstream of the AA, or the presence of major point source discharges that obviously control the hydrology of the AA. OR Freshwater sources that affect the dry season conditions of the AA are substantially controlled by known diversions of water or other withdrawals directly from the AA,
D	its encompassing wetland, or from its drainage basin. Natural, freshwater sources that affect the dry season conditions of the AA have been eliminated based on the following indicators: impoundment of all possible wet season
	inflows, diversion of all dry-season inflow, predominance of xeric vegetation, etc.

Hydroperiod

The characteristic frequency and duration of inundation or saturation of wetland during a typical year

Indirect Ecological Evidence
n of Inundation or Saturation
 Evidence of aquatic wildlife mortality
 Encroachment of terrestrial vegetation
 Stress or mortality of hydrophytes
 Compressed or reduced plant zonation

Hydroperiod

The characteristic frequency and duration of inundation or saturation of wetland during a typical year

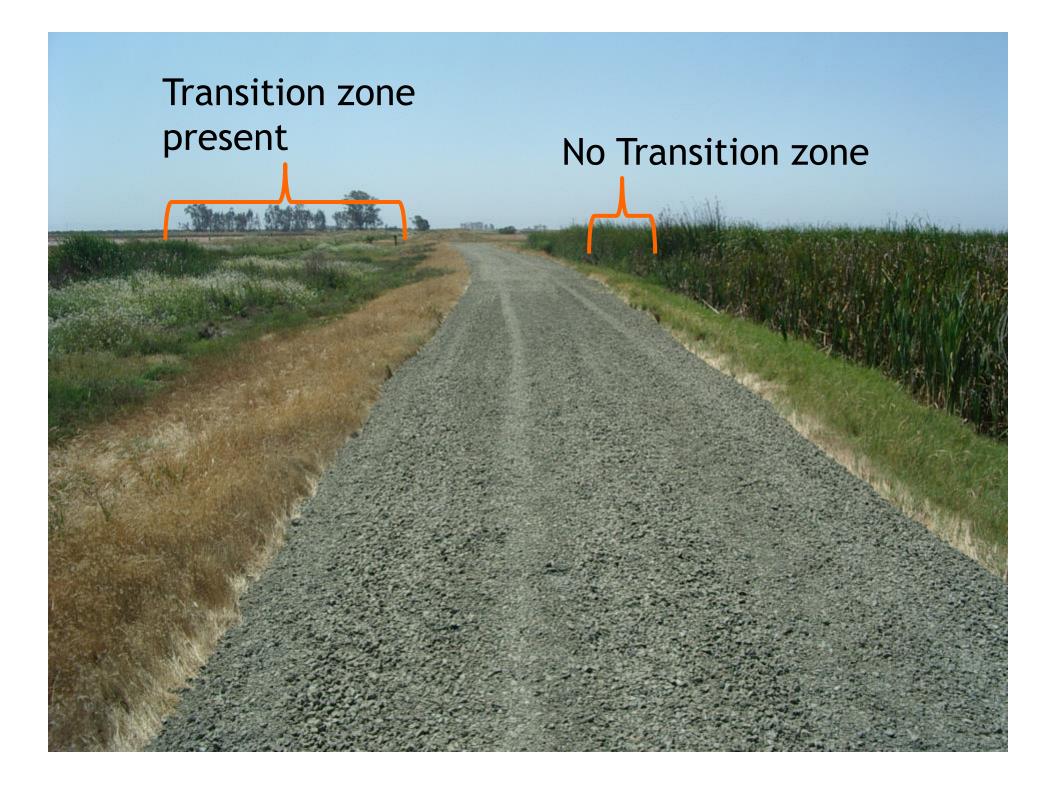
Direct Engineering Evidence	Indirect Ecological Evidence
Increased Extent and Duratic	on of Inundation or Saturation
 Active water control structures at the outlet or inlet (culverts, flashboard dams, slide gates, etc.) Pumps, diversions, ditching that move water <i>into</i> the wetland 	 Late-season vitality of annual vegetation Recently drowned riparian vegetation Extensive fine grained deposits

Rating of Hydroperiod

Alternative States

- A Hydroperiod in AA is characterized by mostly **natural patterns of inundation and drawdown.**
- B Inundation patterns of the AA are of greater quantity or duration than natural but the drawdown is natural.
 - Inundation patterns of the AA are natural but the drawdown pattern is more rapid or extreme than natural.
 - OR
- C Inundation patterns of the AA are of substantially lower magnitude or duration than natural but the drawdown is a natural pattern.

D Both inundation and drawdown patterns of the AA deviate from natural patterns.


Hydrologic Connectivity

- Ability of water to flow into or out of the wetland that contains the AA
- The existence of a transition zone between the wetland and the upland
- Ability to accommodate rising flood waters without large changes in water level
- Hydrologic restrictions include:
 - Roads
 - Levees
 - Concrete walls

Hydrologic Connectivity

Alternative States

Α	Rising water in the wetland that contains the AA has mostly unrestricted access to adjacent areas, without levees or other obstructions to the lateral movement of flood waters.
В	Unnatural features such as levees or road grades limit lateral movement of water along less than 50% of the boundary of the wetland that contains the AA.
С	Unnatural features such as levees or road grades limit lateral movement of water along 50-90 % of the boundary of the wetland that contains the AA.
D	Unnatural features such as levees or road grades limit lateral movement of water along more than 90% of the boundary of the wetland that contains the AA.

Physical Structure Attribute

Considers ...

- complexity of form and structure affecting biodiversity
- Includes two Metrics:
 - Structural Patch Richness
 - Topographic Complexity

Structural Patch Richness

STRUCTURAL PATCH TYPE (circle for presence)

STRUCTURAL PATCH TYPE (circle for presence)	Depressional
Minimum Patch Size	3 m ²
Abundant wrack or organic debris in channel,	
on floodplain, or across depressional wetland	
plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or	
along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large woody debris	
Non-vegetated flats or bare ground	
(sandflats, mudflats, gravel flats, etc.)	
Open water	
Plant hummocks and/or sediment mounds	
Soil cracks	
Standing snag(s) (1 or more at least 3 m tall)	
Submerged vegetation	
Swales on floodplain or along shoreline	
Variegated, convoluted, or crenulated foreshore	
(instead of broadly arcuate or mostly straight)	
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	

Soil Cracks

Standing Snags

Non-vegetated flats or bare ground

Concentric or parallel high water marks

Algal mats

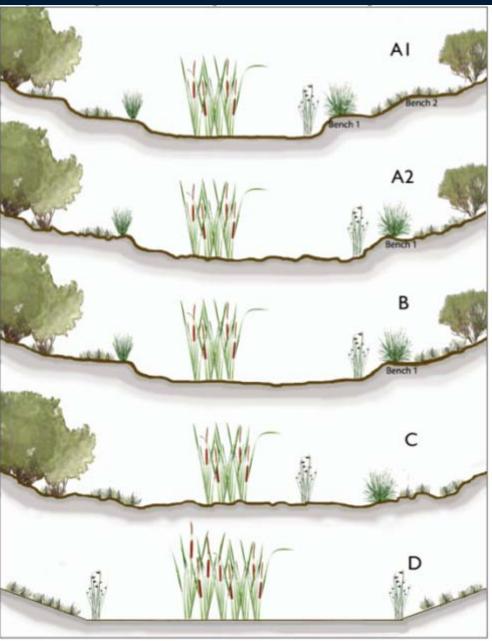
Animal burrow

Plant Hummock

Woody vegetation in water

Structural Patch Richness

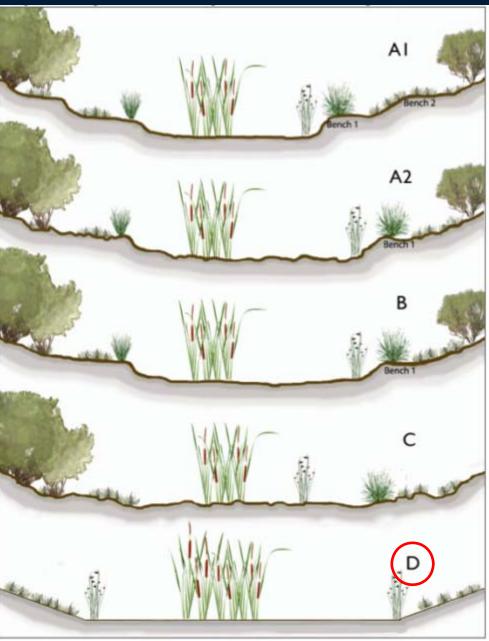
Rating	# of patches present
Α	≥ 9
В	7 - 8
С	4 - 6
D	≤ 3



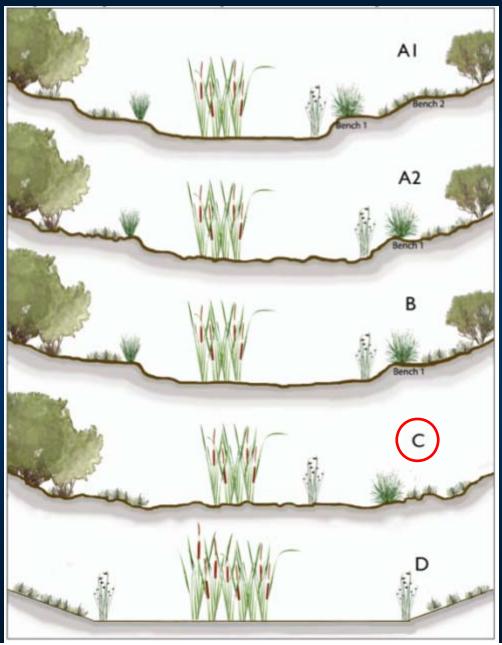
Variegated (left) and Non-variegated (right) shores

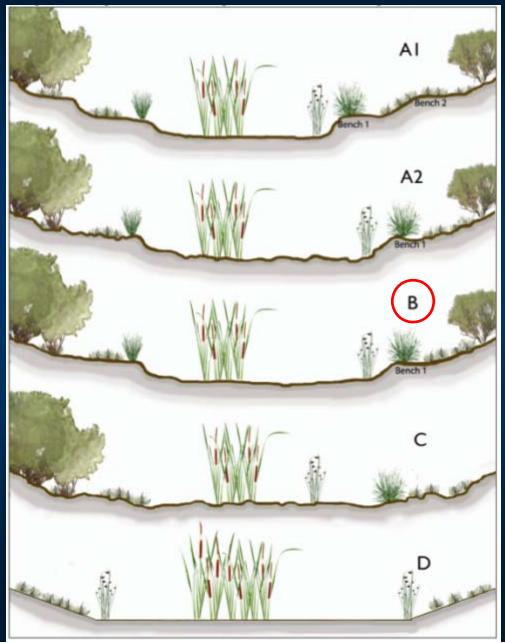
Refers to the micro- and macro-topographic relief and variety of elevations within a wetland due to physical features and elevation gradients.

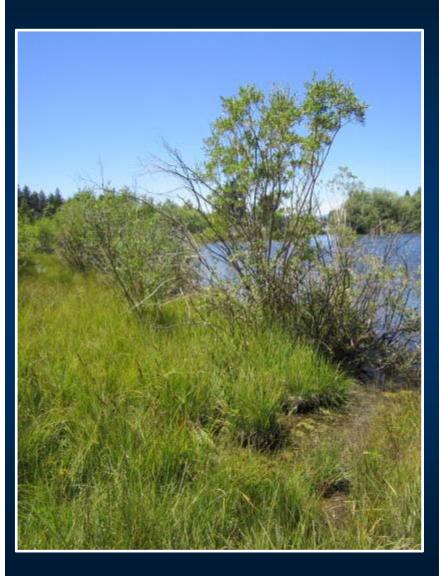
- Step 1-observe your AA for indicators of topographic complexity
- Step 2- draw cross sections
- Step 3- compare your cross sections to the diagram and scoring rationale

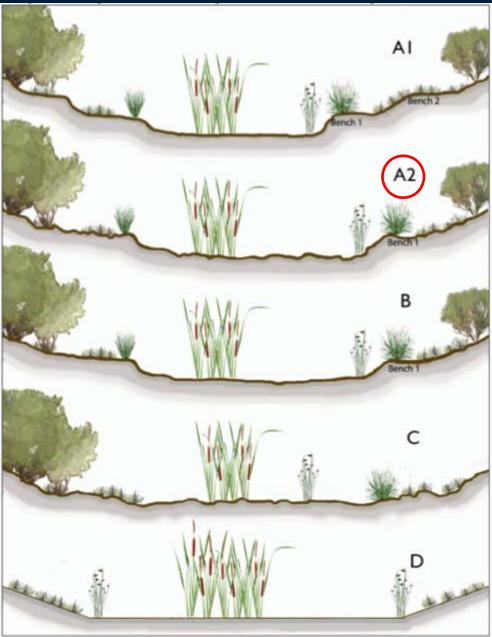

MacrotopographyMicrotopography

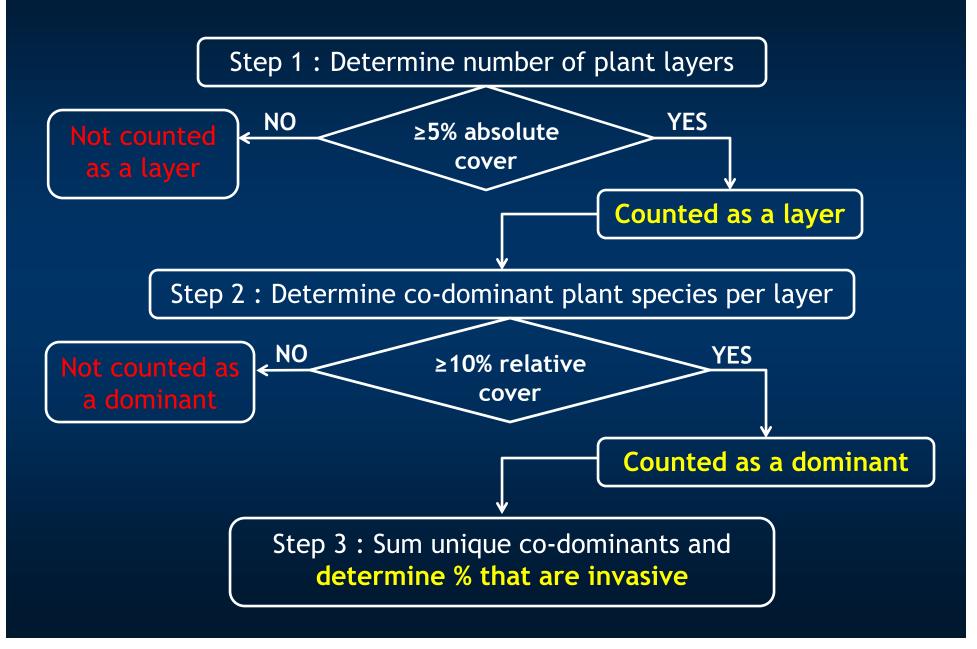
Туре	Examples of Topographic Features		
Depressional	pools, islands, cobbles, boulders, mounds or hummocks, variegated shorelines, soil cracks, partially buried debris, animal tracks		


Rating	Alternative States	
	AA as viewed along a typical cross-section has two or more benches above the middle area or bottom zone of the AA, but these benches, and the slopes between them, lack abundant micro-topographic relief or variability as illustrated in profile A2 of Figure 6.	
A	OR	
	AA as viewed along a typical cross-section has one or more benches above the middle area or bottom zone of the AA, and the bench(es), plus the slopes between them contain physical patch types or features that contribute to abundant micro-topographic relief or variability as illustrated in profile A1 of Figure 6.	
В	AA has one bench above the middle area or bottom zone of the AA, but this bench lacks abundant micro-topographic relief. The AA resembles profile B of Figure 6.	
С	AA lacks any obvious bench, and is best characterized by a single slope that has at least a moderate amount of micro-topographic complexity, as illustrated in profile C of Figure 6.	
D	AA has a single, uniform slope with little or no micro-topographic complexity, as illustrated in profile D of Figure 6.	









Biotic Structure Attribute

Considers:

- Ecological complexity of plant communities
- Includes three metrics:
 - Plant Community Composition
 - Number of Plant Layers Present
 - Number of Co-dominant Species
 - Percent Invasion
 - Horizontal Interspersion and Zonation
 - Vertical Biotic Structure

Determining Plant Community Submetrics

Rules for Plant Community Metric

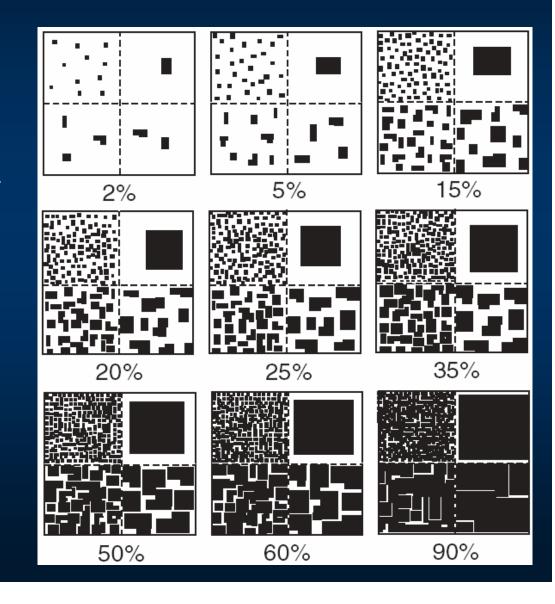
Plant Layers:

 identified by actual plant heights, regardless of the growth potential of the species

Co-dominant Species:

- can exist in multiple layers, a given plant species is counted only once when calculating total number of co-dominants and percent invasive spp.
- Dead vegetation can count as a layer, but is not included in the dominant species count
- Vines are counted in the layer of vegetation they are covering

Absolute vs. Relative % Cover


50 % of the rectangle is colored. Therefore, the <u>absolute</u> percent cover of color in the rectangle is 50%.

Absolute vs. Relative % Cover

OF THE COLORED PORTION of the rectangle, 50% is green. Therefore the <u>relative</u> percent cover of green within the colored portion is 50% (the rest is dark blue). However, the <u>absolute</u> cover of green within the original rectangle would only be 25%.

Estimating Percent Aerial Cover

It's worthwhile to "calibrate your eyes" to different percent cover situations

Plant Community Sub-Metric: Plant Layers

Depressional

Plant Layers				
Aquatic	Aquatic Semi-aquatic and Riparian			parian
	Short	Medium	Tall	Very
on water surface	<.5m	(.5-1.5)	(1.5-3)	Tall (>3m)

Plant Community Sub-Metric: Number of Layers

Very Tall Layer

Salix gooddingii & Salix laevigata

Medium Layer

Tall Layer

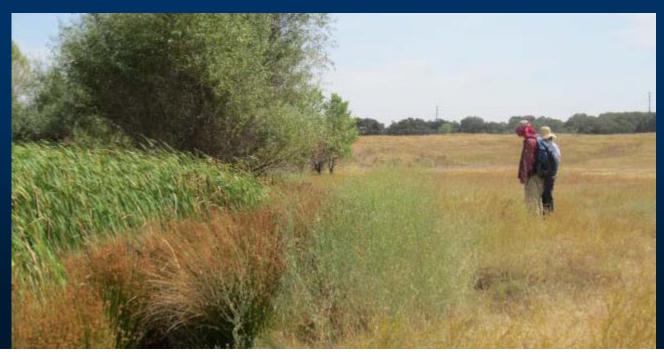
Schoenoplectus californicus

Carex spissa & Typha latifolia

Plant Community Sub-Metrics worksheet

Floating or Canopy-forming (non-confined only)	Invasive?	Short (<0.5 m)	Invasive?
Medium (0.5-1.5 m)	Invasive?	Tall (1.5-3.0 m)	Invasive?
Carex spissa		Schoenoplectus californicu	S
Typha latifolia			
Very Tall (>3.0 m)	Invasive?	Total number of co-dominant species	
Salix gooddingii		for all layers combined (enter here and use in Table 18)	5
Salix laevigata		(enter here and use in Table 18)	
		Percent Invasion	0%
		Round to the nearest integer (enter here and use in Table 18)	

Plant Community Sub-Metrics

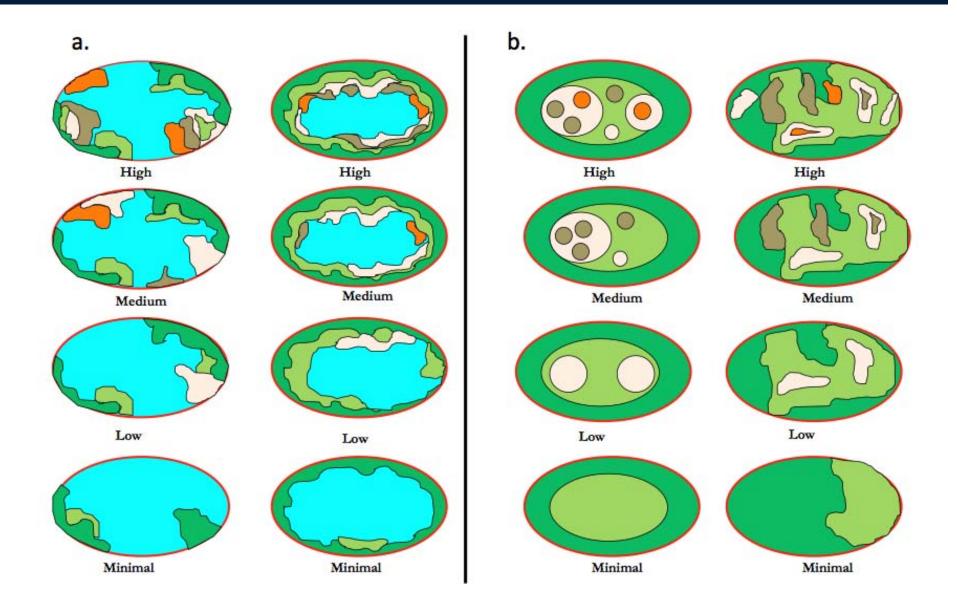

	# of Plant	# Co-	% Co-dominant
	Layers	dominant	Invasive
		Species	Species
Α	4-5	≥ 9	0 - 10%
В	3	7 – 8	11 - 20%
С	2	5-6	21 - 30%
D	0-1	0 – 4	31 - 100%

Horizontal Interspersion

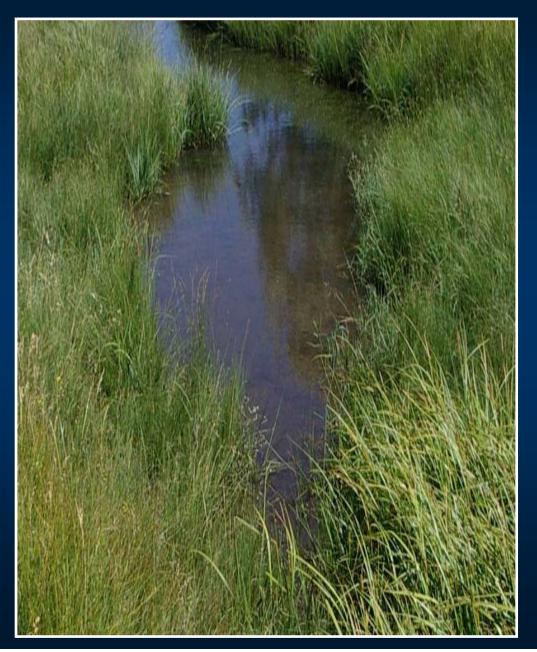
- Interspersion: the number of distinct plant zones and the amount of edge between them
 - Scoring is based upon field observation and aerial image interpretation
- Plant zones: plant monocultures or multi-species associations
 - Remain relatively constant in makeup throughout the AA
 - Arrayed along gradients of elevation, moisture, etc., that affect the plant community organization in 2-D plan view

Scoring Horizontal Interspersion

 An "A" condition means BOTH more zones AND a greater degree of interspersion, and the departure from the "A" condition is proportional to BOTH the reduction in both the numbers of zones AND their interspersion.

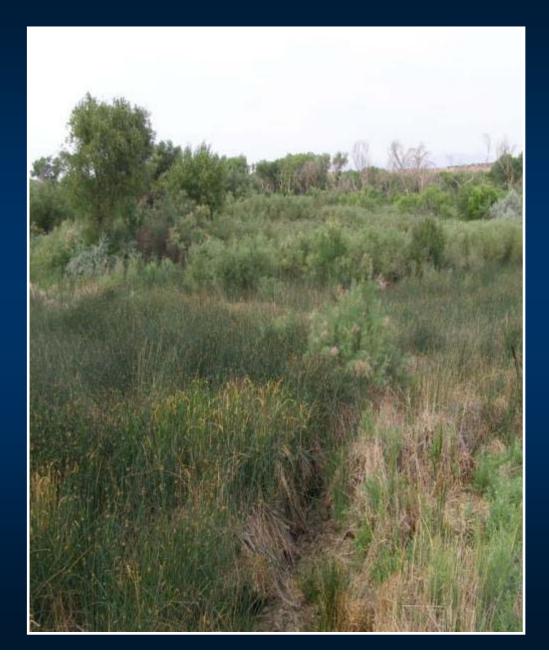


Rating for Horizontal Interspersion


Based on Worksheet drawing and Figure 10 of field book

Rating	Alternative States
А	AA has a high degree of plan-view interspersion.
В	AA has a moderate degree of plan-view interspersion.
С	AA has a low degree of plan-view interspersion.
D	AA has minimal or no plan-view interspersion.

Horizontal Interspersion



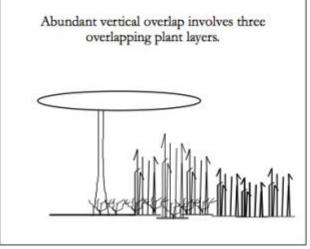
Horizontal Interspersion and Zonation

AA has no plan-view interspersion

Horizontal Interspersion and Zonation

AA has a high degree of plan-view interspersion

Vertical Biotic Structure: two possible methods


Method 1: Systems dominated by emergent monocots but lacking large woody vegetation

Method 2: Systems dominated by overlap of multiple plant layers

Diagrams of plant canopies and entrained litter used to assess Vertical Biotic Structure in wetlands dominated by emergent monocots

Rating	Alternative States
A	Most of the vegetated plain of the AA has a dense canopy of living vegetation or entrained litter or detritus forming a "ceiling" of cover above the wetland surface that shades the surface and can provide abundant cover for wildlife.
В	Less than half (25-50%) of the vegetated plain of the AA has a dense canopy of vegetation or entrained litter or detritus as described in "A" above; OR Most of the vegetated plain has a sparse canopy of vegetation or entrained litter or detritus.
С	25-50% of the vegetated plain of the AA has a sparse canopy of vegetation or entrained litter or detritus.
D	Most of the AA (>75%) lacks a canopy of living vegetation or entrained litter or detritus.

Diagrams of plant canopies used to assess Vertical Biotic Structure in wetlands dominated overlap of multiple layers

Rating	Alternative States				
A	More than 50% of the vegetated area supports abundant overlap of plant layers				
В	More than 50% of the vegetated area supports at least moderate overlap of plant layers				
С	25–50% of the of the vegetated area supports at least moderate overlap of plant layers				
D	Less than 25% of the vegetated area supports moderate overlap of plant layers, or the AA is sparsely vegetated overall.				

Steps of CRAM Assessment

- Step 1: Assemble background information
- Step 2: Classify the wetland
- Step 3: Verify the appropriate season
- Step 4: Sketch the CRAM Assessment Area (AA)
- Step 5: Conduct the office assessment of AA
- Step 6: Conduct the field assessment of AA
- Step 7: Complete CRAM QA/QC
- Step 8: Submit assessment results using *e*CRAM

CRAM Initial QAQC

- Review map of AA
- Review CRAM results
 Complete all CRAM data fields
- Add comments as needed
- Complete stressor checklist

 Ensure photographs, GPS points and any plant voucher specimens have been collected

Basic Information Sheet

Basic Information Sheet: Depressional Wetlands

Assessment Area Na	me:				
Project Name:					
Assessment Area ID	#:				
Project ID #:		Date:			
Assessment Team Members for This AA					
AA Location:					
Latitude:	Longitude:		Datum:		
AA Category:					
Pre-Restoration	Post-Restoration	Pre-Mitigation	Post-Mitigation		
- Pre-Impact	D Post-Impact	o Training	a Ambient		
Reference	D Other:				
Origin of Wetland	(if known):				
🗆 Natural system	 Artificial system 	i -			
Type of Manageme	ent (if known):				
a waterfowl/birds a	amphibians 🛛 general v	vildlife o sediment o	water quality 🗆 stormwater		
🗆 water supply (agric	ulture) 🗆 water supply (li	vestock) 🗆 not manag	ed o other:		
Which best describ	es the type of depressio	nal wetland?			
freshwater mar	sh 🛛 alkaline mar	sh 🗆 brackish :	marsh		
- other (specify):					
AA Encompasses:					
o enti	ire wetland 🛛 🗆 p	ortion of the wetland			
Which best describ	es the hydrologic state	of the wetland at the	time of assessment?		
ponded/inu	ndated 🗆 saturate	d soil, but no surface w	vater 🗆 dry		

Scoring Sheet

Buffer and Landscape Context Attribute

Hydrology Attribute

Physical Structure Attribute

Biotic Structure Attribute

Overall AA Score

AA Name:				Da	te:
Attribute 1: Buffer and Lan	dscape (Context (pp. 8-1	5)	Comments
Aquatic Area Abundance Se	ore (D)	E.	Alpha.	Numeric	
Buffer:			-		
Buffer submetric A: Percent of AA with Buffer	Alpha,	Numeric			
Buffer submetric B: Average Buffer Width					
Buffer submetric C: Buffer Condition					
Raw Attribute Score	= D+[(x (A x I	$\mathfrak{H}_{\mu}\mathbf{I}_{\mu}$		Final Attribute Score = (Raw Score/24) x 100
Attribute 2: Hydrology (pp	. 16-21)				
Water Source		8	Alpha.	Numeric	
Hydroperiod					
Hydrologic Connectivity					
Raw Attribute Score = sum of numeric scores				Final Attribute Score = (Raw Score/36) x 100	
Attribute 3: Physical Struct	ure (pp.	22-28)			
Structural Patch Richness			Alpha.	Numeric	
Topographic Complexity					
Raw Attribute Score = s	um of nu	meric so	ores		Final Attribute Score = (Raw Score/24) x 100
Attribute 4: Biotic Structur					22 (N C)
	on (based		etrics A	-C)	
	Alpha.	Numeric			
Plant Community Composition Plant Community submetric A:		Numeric			
Plant Community Compositi Plant Community submetric A: Number of plant layers Plant Community submetric B:		Numeric			
Plant Community Compositi Plant Community submetric A: Number of plant layers Plant Community submetric B: Number of Co-dominant species Plant Community submetric C: Percent Invasion Plant Commun	Alpha.	osition M			
Plant Community Compositi Plant Community submetric A: Number of plant layers Plant Community submetric B: Number of Co-dominant species Plant Community submetric C: Percent Invasion Plant Commun	Alpha.	osition M			
Plant Community Compositi Plant Community submetric A: Number of plant layers Plant Community submetric B: Number of Co-dominant species Plant Community submetric C: Percent Invasion Plant Commun (numeric d	Alpha.	osition M			

Wetland Disturbances

Has a major disturbance occurred at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide, or other?	flood		fire lar		dslide	other
If yes, then how severe is the disturbance?	how severe is the disturbance? likely to affect site next 5 or more years		likely to affect site next 3-5 years		likely to affect site next 1-2 years	
	depressiona	essional vernal po		ol	vernal pool system	
Has this wetland been converted from another type? If yes, then what was the	non-confine riverine	ed	confined riverine			ar-built stuarine
previous type?	perennial sali estuarine	ine	e perennial non- saline estuarine		wet meadow	
	lacustrine		seep or spr	ing		playa

Stressor Checklist

- Anthropogenic perturbation within the wetland or in the surrounding landscape with negative impact on condition and function
- Can be "present" or "significant"
- Four assumptions:
 - Stressor(s) can lead to deviation from best attainable condition
 - More stressors can cause a decline in condition
 Linear, multiplicative, other non-linear model
 - Increase in intensity/proximity increases decline in condition
 - Continuous/chronic stress increases decline in condition

Stressor Checklist

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) <u>discharges</u> (urban runoff, farm drainage)		
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Important to record the nature and degree of stressors for future module evaluation and development

Steps of CRAM Assessment

- Step 1: Assemble background information
- Step 2: Classify the wetland
- Step 3: Verify the appropriate season
- Step 4: Sketch the CRAM Assessment Area (AA)
- Step 5: Conduct the office assessment of AA
- Step 6: Conduct the field assessment of AA
- Step 7: Complete CRAM QA/QC
- Step 8: Submit assessment results using *e*CRAM

